Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 132-137
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
perturbation, multipliers.
Keywords: homogenization, uniform resolvent convergence, asymptotic decomposition
Keywords: homogenization, uniform resolvent convergence, asymptotic decomposition
@article{MZM_2023_113_1_a10,
author = {D. I. Borisov},
title = {Homogenization of {Operators} with {Perturbations} of {General} {Form} in the {Lower-Order} {Terms}},
journal = {Matemati\v{c}eskie zametki},
pages = {132--137},
year = {2023},
volume = {113},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/}
}
D. I. Borisov. Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 132-137. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/
[1] T. A. Suslina, Algebra i analiz, 29:2 (2017), 139–192
[2] S. E. Pastukhova, R. N. Tikhomirov, “Ob operatornykh otsenkakh usredneniya dlya ellipticheskikh uravnenii s mladshimi chlenami”, Algebra i analiz, 29:5 (2017), 179–207 | MR
[3] S. E. Pastukhova, Matem. zametki, 94:1 (2013), 130–150 | DOI | MR | Zbl
[4] C. E. Kenig, F. Lin, Z. Shen, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR
[5] G. Griso, Asymptot. Anal., 40:3-4 (2004), 269–286 | MR
[6] D. I. Borisov, A. I. Mukhametrakhimova, Matem. sb., 212:8 (2021), 33–88 | DOI
[7] I. Bryuning, V. V. Grushin, S. Yu. Dobrokhotov, Matem. zametki, 92:2 (2012), 163–180 | DOI | MR | Zbl
[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, Dokl. AN, 461:5 (2015), 516–520 | MR