Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 132-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Mots-clés :
perturbation, multipliers.
Keywords: homogenization, uniform resolvent convergence, asymptotic decomposition
Keywords: homogenization, uniform resolvent convergence, asymptotic decomposition
@article{MZM_2023_113_1_a10,
author = {D. I. Borisov},
title = {Homogenization of {Operators} with {Perturbations} of {General} {Form} in the {Lower-Order} {Terms}},
journal = {Matemati\v{c}eskie zametki},
pages = {132--137},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/}
}
TY - JOUR AU - D. I. Borisov TI - Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms JO - Matematičeskie zametki PY - 2023 SP - 132 EP - 137 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/ LA - ru ID - MZM_2023_113_1_a10 ER -
D. I. Borisov. Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 132-137. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/