Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 132-137

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : perturbation, multipliers.
Keywords: homogenization, uniform resolvent convergence, asymptotic decomposition
@article{MZM_2023_113_1_a10,
     author = {D. I. Borisov},
     title = {Homogenization of {Operators} with {Perturbations} of {General} {Form} in the {Lower-Order} {Terms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {132--137},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms
JO  - Matematičeskie zametki
PY  - 2023
SP  - 132
EP  - 137
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/
LA  - ru
ID  - MZM_2023_113_1_a10
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms
%J Matematičeskie zametki
%D 2023
%P 132-137
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/
%G ru
%F MZM_2023_113_1_a10
D. I. Borisov. Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 132-137. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a10/