Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_6_a9, author = {D. V. Treschev and A. O. Chernyshev}, title = {Entropy of a {Unitary} {Operator} in $\mathbb C^J$}, journal = {Matemati\v{c}eskie zametki}, pages = {903--923}, publisher = {mathdoc}, volume = {112}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/} }
D. V. Treschev; A. O. Chernyshev. Entropy of a Unitary Operator in $\mathbb C^J$. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 903-923. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/
[1] K. A. Afonin, D. V. Treschev, “Entropiya unitarnogo operatora na $L^2(\mathbb T^n)$”, Matem. sb., 213:7 (2022), 39–96 | DOI | MR
[2] D. V. Treschev, “$\mu $-Norma operatora”, Izbrannye voprosy matematiki i mekhaniki, Tr. MIAN, 310, MIAN, M., 2020, 280–308 | DOI | MR
[3] D. Treschev, “$\mu$-Norm and regularity”, J. Dynam. Differential Equations, 33:3 (2020), 1269–1295 | DOI | MR
[4] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[5] T. Downarowicz, B. Frej, “Measure-theoretic and topological entropy of operators on function spaces”, Ergodic Theory Dynam. Systems, 25 (2005), 455–481 | DOI | MR | Zbl
[6] T. Downarowicz, B. Frej, Doubly stochastic operators with zero entropy., arXiv: 1803.07882v1
[7] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991 | MR | Zbl
[8] L. Accardi, M. Ohya, N. Watanabe, “Doubly stochastic operators with zero entropy”, Open Systems and Information Dynamics, 4 (1997), 41–87 | DOI
[9] C. Beck, D. Graudenz, “Symbolic dynamics of successive quantum-mechanical measurements”, Phys. Rev. A, 46 (1992), 6265–6276 | DOI | MR
[10] M. D. Srinivas, “Quantum generalization of Kolmogorov entropy”, J. Math. Phys., 19 (1978), 1952–1961 | DOI | MR | Zbl
[11] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1968 | MR
[12] Y. Coudene, Ergodic Theory and Dynamical Systems, Springer, London, 2016 | MR | Zbl