Entropy of a Unitary Operator in $\mathbb C^J$
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 903-923.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of defining, calculating, and studying the properties of the entropy of a unitary operator in a finite-dimensional Hilbert space.
Keywords: entropy of a unitary operator, Hilbert space, unitary operator.
@article{MZM_2022_112_6_a9,
     author = {D. V. Treschev and A. O. Chernyshev},
     title = {Entropy of a {Unitary} {Operator} in $\mathbb C^J$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {903--923},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/}
}
TY  - JOUR
AU  - D. V. Treschev
AU  - A. O. Chernyshev
TI  - Entropy of a Unitary Operator in $\mathbb C^J$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 903
EP  - 923
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/
LA  - ru
ID  - MZM_2022_112_6_a9
ER  - 
%0 Journal Article
%A D. V. Treschev
%A A. O. Chernyshev
%T Entropy of a Unitary Operator in $\mathbb C^J$
%J Matematičeskie zametki
%D 2022
%P 903-923
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/
%G ru
%F MZM_2022_112_6_a9
D. V. Treschev; A. O. Chernyshev. Entropy of a Unitary Operator in $\mathbb C^J$. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 903-923. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/

[1] K. A. Afonin, D. V. Treschev, “Entropiya unitarnogo operatora na $L^2(\mathbb T^n)$”, Matem. sb., 213:7 (2022), 39–96 | DOI | MR

[2] D. V. Treschev, “$\mu $-Norma operatora”, Izbrannye voprosy matematiki i mekhaniki, Tr. MIAN, 310, MIAN, M., 2020, 280–308 | DOI | MR

[3] D. Treschev, “$\mu$-Norm and regularity”, J. Dynam. Differential Equations, 33:3 (2020), 1269–1295 | DOI | MR

[4] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[5] T. Downarowicz, B. Frej, “Measure-theoretic and topological entropy of operators on function spaces”, Ergodic Theory Dynam. Systems, 25 (2005), 455–481 | DOI | MR | Zbl

[6] T. Downarowicz, B. Frej, Doubly stochastic operators with zero entropy., arXiv: 1803.07882v1

[7] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991 | MR | Zbl

[8] L. Accardi, M. Ohya, N. Watanabe, “Doubly stochastic operators with zero entropy”, Open Systems and Information Dynamics, 4 (1997), 41–87 | DOI

[9] C. Beck, D. Graudenz, “Symbolic dynamics of successive quantum-mechanical measurements”, Phys. Rev. A, 46 (1992), 6265–6276 | DOI | MR

[10] M. D. Srinivas, “Quantum generalization of Kolmogorov entropy”, J. Math. Phys., 19 (1978), 1952–1961 | DOI | MR | Zbl

[11] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1968 | MR

[12] Y. Coudene, Ergodic Theory and Dynamical Systems, Springer, London, 2016 | MR | Zbl