Entropy of a Unitary Operator in $\mathbb C^J$
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 903-923

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of defining, calculating, and studying the properties of the entropy of a unitary operator in a finite-dimensional Hilbert space.
Keywords: entropy of a unitary operator, Hilbert space, unitary operator.
@article{MZM_2022_112_6_a9,
     author = {D. V. Treschev and A. O. Chernyshev},
     title = {Entropy of a {Unitary} {Operator} in $\mathbb C^J$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {903--923},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/}
}
TY  - JOUR
AU  - D. V. Treschev
AU  - A. O. Chernyshev
TI  - Entropy of a Unitary Operator in $\mathbb C^J$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 903
EP  - 923
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/
LA  - ru
ID  - MZM_2022_112_6_a9
ER  - 
%0 Journal Article
%A D. V. Treschev
%A A. O. Chernyshev
%T Entropy of a Unitary Operator in $\mathbb C^J$
%J Matematičeskie zametki
%D 2022
%P 903-923
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/
%G ru
%F MZM_2022_112_6_a9
D. V. Treschev; A. O. Chernyshev. Entropy of a Unitary Operator in $\mathbb C^J$. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 903-923. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a9/