The Cost of Symmetry in Connected Graphs
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 895-902.

Voir la notice de l'article provenant de la source Math-Net.Ru

We answer a question posed in a joint paper by Klyachko and Luneva about the optimality of an estimate for the cost of symmetry in graphs. The original estimate is that if one can delete $n$ vertices from a connected graph $G$ so that the resulting graph contains no connected subgraph isomorphic to $\Gamma$, then in $G$ there exists a vertex subset of cardinality $\le n|V(\Gamma)|$ invariant under all automorphisms of $G$ such that the graph obtained from $G$ by deleting this subset contains no subgraph isomorphic to $\Gamma$. We prove that there exists a graph $\Gamma$ for which this estimate is not optimal.
Mots-clés : graph automorphism
Keywords: invariant system of representatives.
@article{MZM_2022_112_6_a8,
     author = {M. S. Terekhov},
     title = {The {Cost} of {Symmetry} in {Connected} {Graphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {895--902},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a8/}
}
TY  - JOUR
AU  - M. S. Terekhov
TI  - The Cost of Symmetry in Connected Graphs
JO  - Matematičeskie zametki
PY  - 2022
SP  - 895
EP  - 902
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a8/
LA  - ru
ID  - MZM_2022_112_6_a8
ER  - 
%0 Journal Article
%A M. S. Terekhov
%T The Cost of Symmetry in Connected Graphs
%J Matematičeskie zametki
%D 2022
%P 895-902
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a8/
%G ru
%F MZM_2022_112_6_a8
M. S. Terekhov. The Cost of Symmetry in Connected Graphs. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 895-902. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a8/

[1] A. A. Klyachko, N. M. Luneva, “Invariant systems of representatives, or The cost of symmetry”, Discrete Math., 344:6 (2021), Paper No. 112361 | DOI | MR

[2] M. I. Kargrapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR

[3] E. I. Khukhro, N. Yu. Makarenko, “Large characteristic subgroups satisfying multilinear commutator identities”, J. London Math. Soc., 75:3 (2007), 635–646 | DOI | MR | Zbl

[4] A. A. Klyachko, M. V. Milentyeva, “Large and symmetric: The Khukhro–Makarenko theorem on laws – without laws”, J. Algebra, 424 (2015), 222–241 ; (2014), arXiv: 1309.0571 | DOI | MR | Zbl | Zbl

[5] B. H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29:2 (1954), 236–248 | DOI | MR | Zbl