Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_6_a3, author = {A. I. Kozhanov and N. R. Spiridonova}, title = {Boundary {Value} {Problems} for {Quasi-Hyperbolic} {Equations} with {Degeneration}}, journal = {Matemati\v{c}eskie zametki}, pages = {825--838}, publisher = {mathdoc}, volume = {112}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a3/} }
TY - JOUR AU - A. I. Kozhanov AU - N. R. Spiridonova TI - Boundary Value Problems for Quasi-Hyperbolic Equations with Degeneration JO - Matematičeskie zametki PY - 2022 SP - 825 EP - 838 VL - 112 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a3/ LA - ru ID - MZM_2022_112_6_a3 ER -
A. I. Kozhanov; N. R. Spiridonova. Boundary Value Problems for Quasi-Hyperbolic Equations with Degeneration. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 825-838. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a3/
[1] H. O. Fattorini, “The underdetermined Cauchy problem in Banach spaces”, Math. Ann., 200 (1973), 103–112 | DOI | MR | Zbl
[2] H. O. Fattorini, “Two point boundary value problems for operational differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1 (1974), 63–79 | MR
[3] A. I. Kozhanov, N. R. Pinigina, “Kraevye zadachi dlya nekotorykh neklassicheskikh differentsialnykh uravnenii vysokogo poryadka”, Matem. zametki, 101:3 (2017), 403–412 | DOI | MR | Zbl
[4] V. N. Vragov, “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v prostranstve”, Differents. uravneniya, 13:6 (1977), 1098–1105 | MR | Zbl
[5] V. N. Vragov, “O postanovke i razreshimosti kraevykh zadach dlya uravnenii smeshanno-sostavnogo tipa”, Matem. analiz i smezhnye voprosy matematiki, Nauka, Novosibirsk, 1978, 5–13
[6] I. E. Egorov, V. E. Fedorov, Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, Izd-vo VTs SO RAN, Novosibirsk, 1995 | MR
[7] I. E. Egorov, V. E. Fedorov, I. M. Tikhonova, E. S. Efimova, “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conf. Proc., 1907 (2017), Paper No. 020011 | DOI
[8] I. E. Egorov, “O kraevoi zadache dlya uravneniya smeshannogo tipa so spektralnym parametrom”, Matem. zametki SVFU, 21:1 (2014), 11–17 | MR | Zbl
[9] A. I. Kozhanov, B. D. Koshanov, Zh. B. Sultangazieva, “Novye kraevye zadachi dlya kvazigiperbolicheskikh uravnenii chetvertogo poryadka”, Sib. elektron. matem. izv., 16 (2019), 1410–1436 | DOI | MR | Zbl
[10] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | Zbl
[11] M. M. Smirnov, Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR
[12] G. Fichera, “On a unified theory of boundary-value problems for elliptic-parabolic equations of second order”, Boundary Problems in Differential Equations, Univ. Wisconsin Press, Madison, WI, 1960, 97–120 | MR
[13] O. A. Oleinik, E. V. Radkevich, “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki. Ser. Matematika. Mat. anal. 1969, VINITI, M., 1971, 7–252 | MR | Zbl
[14] V. N. Vragov, “Smeshannaya zadacha dlya odnogo klassa giperbolo-parabolicheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 24–31 | MR | Zbl
[15] V. N. Vragov, Korrektnye kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, NGU, Novosibirsk, 1983 | MR
[16] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[17] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[18] H. Triebel, Interpolation Theory, Functional Spaces, Differential Operators, VEB Deutscher Verl. Wiss., Berlin, 1978 | MR
[19] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR
[20] A. I. Kozhanov, “Nachalno-granichnye zadachi dlya vyrozhdayuschikhsya giperbolicheskikh uravnenii”, Sib. elektron. matem. izv., 18:1 (2021), 43–53 | DOI | MR | Zbl