Invariant Banach Limits and Their Convex Subsets
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 820-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sets of Banach limits invariant under dilation operators are studied. The convexity of such sets is investigated. Minimal subsets are introduced and studied.
Keywords: Banach limit, space of bounded sequences, dilation operator.
@article{MZM_2022_112_6_a2,
     author = {R. E. Zvolinskii and E. M. Semenov},
     title = {Invariant {Banach} {Limits} and {Their} {Convex} {Subsets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {820--824},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a2/}
}
TY  - JOUR
AU  - R. E. Zvolinskii
AU  - E. M. Semenov
TI  - Invariant Banach Limits and Their Convex Subsets
JO  - Matematičeskie zametki
PY  - 2022
SP  - 820
EP  - 824
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a2/
LA  - ru
ID  - MZM_2022_112_6_a2
ER  - 
%0 Journal Article
%A R. E. Zvolinskii
%A E. M. Semenov
%T Invariant Banach Limits and Their Convex Subsets
%J Matematičeskie zametki
%D 2022
%P 820-824
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a2/
%G ru
%F MZM_2022_112_6_a2
R. E. Zvolinskii; E. M. Semenov. Invariant Banach Limits and Their Convex Subsets. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 820-824. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a2/

[1] S. Banakh, Teoriya lineinykh operatsii, RKhD, M.–Izhevsk, 2001

[2] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80:1 (1948), 167–190 | DOI | MR | Zbl

[3] L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74:3 (1967), 308–311 | DOI | MR | Zbl

[4] C. Chou, “On the size of the set of left invariant means on a semigroup”, Proc. Amer. Math. Soc., 23:1 (1969), 199–205 | MR | Zbl

[5] E. M. Semenov, F. A. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170 | DOI | MR | Zbl

[6] R. Nillsen, “Nets of extreme Banach limits”, Proc. Amer. Math. Soc., 55:2 (1976), 347–352 | MR | Zbl

[7] M. Talagrand, “Géométrie des simplexes de moyennes invariantes”, J. Funct. Anal., 34:2 (1979), 304–337 | DOI | MR | Zbl

[8] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Geometriya banakhovykh predelov i ikh prilozheniya”, UMN, 75:4 (454) (2020), 153–194 | DOI | MR | Zbl

[9] W. F. Eberlein, “Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 1:5 (1950), 662–665 | MR | Zbl

[10] E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 259:6 (2010), 1517–1541 | DOI | MR | Zbl

[11] E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Invariant Banach limits and applications to noncommutative geometry”, Pacific J. Math., 306:1 (2020), 357–373 | DOI | MR | Zbl

[12] E. A. Alekhno, E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Poryadkovye i geometricheskie svoistva mnozhestva banakhovykh predelov”, Algebra i analiz, 28:3 (2016), 3–35 | MR