Values of the Riemann Zeta Function and the Dirichlet Beta Function at Positive Integer Points and Multiple Numerical Series
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 947-952.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: values of the Riemann zeta function and the Dirichlet beta function at positive integer points, multiple numerical series, Mordell–Tornheim series.
@article{MZM_2022_112_6_a13,
     author = {K. A. Mirzoev and T. A. Safonova},
     title = {Values of the {Riemann} {Zeta} {Function} and the {Dirichlet} {Beta} {Function} at {Positive} {Integer} {Points} and {Multiple} {Numerical} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {947--952},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a13/}
}
TY  - JOUR
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - Values of the Riemann Zeta Function and the Dirichlet Beta Function at Positive Integer Points and Multiple Numerical Series
JO  - Matematičeskie zametki
PY  - 2022
SP  - 947
EP  - 952
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a13/
LA  - ru
ID  - MZM_2022_112_6_a13
ER  - 
%0 Journal Article
%A K. A. Mirzoev
%A T. A. Safonova
%T Values of the Riemann Zeta Function and the Dirichlet Beta Function at Positive Integer Points and Multiple Numerical Series
%J Matematičeskie zametki
%D 2022
%P 947-952
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a13/
%G ru
%F MZM_2022_112_6_a13
K. A. Mirzoev; T. A. Safonova. Values of the Riemann Zeta Function and the Dirichlet Beta Function at Positive Integer Points and Multiple Numerical Series. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 947-952. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a13/

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York, 1972 | MR

[2] S. R. Finch, Mathematical Constants, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[3] NIST Handbook of Mathematical Functions, Cambridge, New York, 2010 | MR | Zbl

[4] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. T. 1. Elementarnye funktsii, Fizmatlit, M., 2002 | MR

[5] L. Tornheim, Amer. J. Math., 72 (1950), 303–314 | DOI | MR | Zbl

[6] L. J. Mordell, J. London Math. Soc., 33 (1958), 368–371 | DOI | MR | Zbl

[7] I. A Aliev, Tornheim-Like Series, Harmonic Numbers and Zeta Values, 2020, arXiv: 2008.02488

[8] D. Leshchiner, J. Number Theory, 13 (1981), 355–362 | DOI | MR | Zbl

[9] K. A. Mirzoev, T. A. Safonova, Dokl. AN, 482:5 (2018), 500–503 | MR | Zbl

[10] K. A. Mirzoev, T. A. Safonova, Tr. MMO, 80, no. 2, MTsNMO, M., 2019, 157–177

[11] K. A. Mirzoev, T. A. Safonova, Dokl. RAN. Matem., inform., prots. upr., 494 (2020), 48–52 | DOI | Zbl

[12] B. C. Berndt, Ramanujann's Notebooks. Part I, Springer, New York, 1985 | MR

[13] D. M. Bradley, Representations of Catalan's constant, Unpublished Note, 2001

[14] R. C Boo, Amer. Math. Monthly, 94:7 (1987), 662–663 | MR | Zbl

[15] P. Flajolet, B. Salvy, Experiment. Math., 7:1 (1998), 15–35 | DOI | MR | Zbl

[16] J. M. Borwein, Amer. Math. Monthly, 115:2 (2008), 125–137 | DOI | MR | Zbl

[17] J. M. Borwein, K. Dilcher, Ramanujan J., 45:2 (2018), 413–432 | DOI | MR | Zbl