On a Method for Studying the Asymptotics of Solutions of Sturm--Liouville Differential Equations with Rapidly Oscillating Coefficients
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 935-940.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: asymptotic formula, spectral problem, differential equation with irregular coefficients.
@article{MZM_2022_112_6_a11,
     author = {L. N. Valeeva and \`E. A. Nazirova and Ya. T. Sultanaev},
     title = {On a {Method} for {Studying} the {Asymptotics} of {Solutions} of {Sturm--Liouville} {Differential} {Equations} with {Rapidly} {Oscillating} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {935--940},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a11/}
}
TY  - JOUR
AU  - L. N. Valeeva
AU  - È. A. Nazirova
AU  - Ya. T. Sultanaev
TI  - On a Method for Studying the Asymptotics of Solutions of Sturm--Liouville Differential Equations with Rapidly Oscillating Coefficients
JO  - Matematičeskie zametki
PY  - 2022
SP  - 935
EP  - 940
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a11/
LA  - ru
ID  - MZM_2022_112_6_a11
ER  - 
%0 Journal Article
%A L. N. Valeeva
%A È. A. Nazirova
%A Ya. T. Sultanaev
%T On a Method for Studying the Asymptotics of Solutions of Sturm--Liouville Differential Equations with Rapidly Oscillating Coefficients
%J Matematičeskie zametki
%D 2022
%P 935-940
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a11/
%G ru
%F MZM_2022_112_6_a11
L. N. Valeeva; È. A. Nazirova; Ya. T. Sultanaev. On a Method for Studying the Asymptotics of Solutions of Sturm--Liouville Differential Equations with Rapidly Oscillating Coefficients. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 935-940. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a11/

[1] W. N. Everitt, L. Marcus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quazi-Differential Operators, Math. Surveys Monogr., 61, Amer. Math. Soc., Providence, RI, 1999 | MR

[2] K. A. Mirzoev, N. N. Konechnaya, A. A. Shkalikov, Matem. zametki, 104:2 (2018), 231–242 | DOI | MR | Zbl

[3] K. A. Mirzoev, N. N. Konechnaya, Vestn. Mosk. un-ta. Ser. 1. Matem., 2020, no. 1, 23–28 | MR | Zbl

[4] A. M. Savchuk, A. A. Shkalikov, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[5] K. A. Mirzoev, A. A. Shkalikov, Matem. zametki, 99:5 (2016), 788–793 | DOI | MR | Zbl

[6] N. N. Konechnaya, K. A. Mirzoev, Ya. T. Sultanaev, Azerb. J. Math., 10:1 (2020), 162–171 | MR | Zbl

[7] P. N. Nesterov, Matem. zametki, 80:2 (2006), 240–250 | DOI | MR | Zbl

[8] N. F. Valeev, Ya. T. Sultanaev, Dokl. AN, 374:6 (2000), 732–734 | MR

[9] N. K. Makina, E. A. Nazirova, Ya. T. Sultanaev, Matem. zametki, 96:4 (2014), 627–632 | DOI | MR | Zbl

[10] N. F. Valeev, E. A. Nazirova, Ya. T. Sultanaev, Ufimsk. matem. zhurn., 7:3 (2015), 9–15

[11] N. F. Valeev, A. Eskermesuly, Ya. T. Sultanaev, Matem. zametki, 100:3 (2016), 465–468 | DOI | MR | Zbl

[12] N. F. Valeev, O. V. Myakinova, Ya. T. Sultanaev, Matem. zametki, 104:4 (2018), 626–631 | DOI | MR | Zbl