Density of the Points of Continuity of the Metric Function and Projection in Asymmetric Spaces
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 924-934.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions concerning the density of the sets of points of continuity of metric functions and metric projection onto sets in asymmetric spaces are studied.
Keywords: asymmetric space, convex set, metric function, metric projection.
@article{MZM_2022_112_6_a10,
     author = {I. G. Tsar'kov},
     title = {Density of the {Points} of {Continuity} of the {Metric} {Function} and {Projection} in {Asymmetric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {924--934},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a10/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Density of the Points of Continuity of the Metric Function and Projection in Asymmetric Spaces
JO  - Matematičeskie zametki
PY  - 2022
SP  - 924
EP  - 934
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a10/
LA  - ru
ID  - MZM_2022_112_6_a10
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Density of the Points of Continuity of the Metric Function and Projection in Asymmetric Spaces
%J Matematičeskie zametki
%D 2022
%P 924-934
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a10/
%G ru
%F MZM_2022_112_6_a10
I. G. Tsar'kov. Density of the Points of Continuity of the Metric Function and Projection in Asymmetric Spaces. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 924-934. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a10/

[1] S. Cobzas, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR | Zbl

[2] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Front. Math., Birkhäuser, Basel, 2013 | DOI | MR | Zbl

[3] V. Donju$\acute{a}$n, N. Jonard-P$\acute{e}$rez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl

[4] A. R. Alimov, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnym rasstoyaniem”, UMN, 58:2 (350) (2003), 159–160 | DOI | MR | Zbl

[5] A. R. Alimov, “O strukture dopolneniya k chebyshevskim mnozhestvam”, Funkts. analiz i ego prilozh., 35:3 (2001), 19–27 | DOI | MR | Zbl

[6] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4 (2) (2014), 489–497 | DOI | Zbl

[7] I. G. Tsarkov, “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Matem. sb., 211:8 (2020), 132–157 | DOI | MR | Zbl

[8] I. G. Tsarkov, “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Matem. sb., 210:9 (2019), 129–152 | DOI | MR | Zbl

[9] I. G. Tsarkov, “Nepreryvnye vyborki iz operatorov metricheskoi proektsii i ikh obobschenii”, Izv. RAN. Ser. matem., 82:4 (2018), 199–224 | DOI | MR | Zbl

[10] I. G. Tsarkov, “Nepreryvnye vyborki v nesimmetrichnykh prostranstvakh”, Matem. sb., 209:4 (2018), 95–116 | DOI | MR | Zbl

[11] I. G. Tsarkov, “Svoistva monotonno lineino svyaznykh mnozhestv”, Izv. RAN. Ser. matem., 85:2 (2021), 142–171 | DOI | MR | Zbl

[12] I. G. Tsarkov, “Uniformly and locally convex asymmetric spaces”, Russ. J. Math. Phys., 29:1 (2022), 141–148 | DOI | MR | Zbl

[13] A. R. Alimov, I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86 | DOI | MR | Zbl

[14] A. R. Alimov, I. G. Tsar'kov, “Suns, moons, and $\mathring B$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | MR | Zbl

[15] A. R. Alimov, I. G. Tsarkov, “$B$-polnye mnozhestva i ikh approksimativnye i strukturnye svoistva”, Sib. matem. zhurn., 63:3 (2022), 500–509 | DOI | Zbl

[16] I. G. Tsarkov, “Ravnomernaya vypuklost v nesimmetrichnykh prostranstvakh”, Matem. zametki, 110:5 (2021), 773–785 | DOI | Zbl

[17] M. D. Mabula, S. Cobzas, “Zabrejko's lemma and the fundamental principles of functional analysis in the asymmetric case”, Topology Appl., 184 (2015), 1–15 | DOI | MR | Zbl

[18] M. Bachir, “Asymmetric normed Baire space”, Results Math., 76:4 (2021), 1–9 | DOI | MR

[19] M. Bachirc, G. Flores, “Index of symmetry and topological classification of asymmetric normed spaces”, Rocky Mountain J. Math., 50:6 (2020), 1951–1964 | MR