Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_6_a0, author = {M. Bayramoglu and Ilgar Shikar Jabbarov (Dzhabbarov) and L. G. Ismailova}, title = {Relationship between the {Extremality} of a {Manifold} and {That} of an {Affine} {Image} of the {Topological} {Product} of {Its} {Several} {Copies}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--809}, publisher = {mathdoc}, volume = {112}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/} }
TY - JOUR AU - M. Bayramoglu AU - Ilgar Shikar Jabbarov (Dzhabbarov) AU - L. G. Ismailova TI - Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies JO - Matematičeskie zametki PY - 2022 SP - 803 EP - 809 VL - 112 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/ LA - ru ID - MZM_2022_112_6_a0 ER -
%0 Journal Article %A M. Bayramoglu %A Ilgar Shikar Jabbarov (Dzhabbarov) %A L. G. Ismailova %T Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies %J Matematičeskie zametki %D 2022 %P 803-809 %V 112 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/ %G ru %F MZM_2022_112_6_a0
M. Bayramoglu; Ilgar Shikar Jabbarov (Dzhabbarov); L. G. Ismailova. Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 803-809. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/
[1] V. G. Sprindzhuk, Metricheskaya teoriya diofantovykh priblizhenii, Nauka, M., 1977 | MR
[2] V. I. Bernik, E. I. Kovalevskaya, “Ekstremalnoe svoistvo nekotorykh poverkhnostei v $n$-mernom evklidovom prostranstve”, Matem. zametki, 15:2 (1974), 247–254 | MR | Zbl
[3] M. Bayramoglu, I. Sh. Jabbarov, L. G. Kazimova, “On some theoretic-functional results concerning the theory of extremality and their application”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:2 (2018), 229–237 | MR | Zbl
[4] E. I. Kovalevskaya, “Trigonometricheskie summy v metricheskoi teorii diofantovykh priblizhenii”, Chebyshevskii sb., 20:2 (2019), 207–220 | DOI | MR | Zbl
[5] E. I. Kovalevskaya, “Metricheskie teoremy o priblizhenii nulya lineinymi kombinatsiyami mnogochlenov s tselymi koeffitsientami”, Acta Arith., 25:1 (1973), 93–104 | DOI | Zbl
[6] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961 | MR
[7] E. I. Kovalevskaya, “Sovmestno ekstremalnye mnogoobraziya”, Matem. zametki, 41:1 (1987), 3–8 | MR | Zbl
[8] G. E. Shilov, Matematicheskii analiz. Funktsii neskolkikh veschestvennykh peremennykh, Nauka, M., 1972 | Zbl
[9] I. Sh. Dzhabbarov, “O mnogomernoi probleme Terri dlya kubcheskogo mnogochlena”, Matem. zametki, 107:5 (2020), 657–673 | DOI | MR | Zbl
[10] I. Sh. Dzhabbarov, “Ob odnom tozhdestve garmonicheskogo analiza i ego prilozheniyakh”, Dokl. AN SSSR, 314:5 (1990), 1052–1054 | MR | Zbl
[11] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR