Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 803-809.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between the extremality of a manifold and that of an affine image of the product of its several copies is studied.
Keywords: differentiable manifold, Tarry's problem, extremality
Mots-clés : Diophantine approximation, affine image.
@article{MZM_2022_112_6_a0,
     author = {M. Bayramoglu and Ilgar Shikar Jabbarov (Dzhabbarov) and L. G. Ismailova},
     title = {Relationship between the {Extremality} of a {Manifold} and {That} of an {Affine} {Image} of the {Topological} {Product} of {Its} {Several} {Copies}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--809},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/}
}
TY  - JOUR
AU  - M. Bayramoglu
AU  - Ilgar Shikar Jabbarov (Dzhabbarov)
AU  - L. G. Ismailova
TI  - Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies
JO  - Matematičeskie zametki
PY  - 2022
SP  - 803
EP  - 809
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/
LA  - ru
ID  - MZM_2022_112_6_a0
ER  - 
%0 Journal Article
%A M. Bayramoglu
%A Ilgar Shikar Jabbarov (Dzhabbarov)
%A L. G. Ismailova
%T Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies
%J Matematičeskie zametki
%D 2022
%P 803-809
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/
%G ru
%F MZM_2022_112_6_a0
M. Bayramoglu; Ilgar Shikar Jabbarov (Dzhabbarov); L. G. Ismailova. Relationship between the Extremality of a Manifold and That of an Affine Image of the Topological Product of Its Several Copies. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 803-809. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a0/

[1] V. G. Sprindzhuk, Metricheskaya teoriya diofantovykh priblizhenii, Nauka, M., 1977 | MR

[2] V. I. Bernik, E. I. Kovalevskaya, “Ekstremalnoe svoistvo nekotorykh poverkhnostei v $n$-mernom evklidovom prostranstve”, Matem. zametki, 15:2 (1974), 247–254 | MR | Zbl

[3] M. Bayramoglu, I. Sh. Jabbarov, L. G. Kazimova, “On some theoretic-functional results concerning the theory of extremality and their application”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:2 (2018), 229–237 | MR | Zbl

[4] E. I. Kovalevskaya, “Trigonometricheskie summy v metricheskoi teorii diofantovykh priblizhenii”, Chebyshevskii sb., 20:2 (2019), 207–220 | DOI | MR | Zbl

[5] E. I. Kovalevskaya, “Metricheskie teoremy o priblizhenii nulya lineinymi kombinatsiyami mnogochlenov s tselymi koeffitsientami”, Acta Arith., 25:1 (1973), 93–104 | DOI | Zbl

[6] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961 | MR

[7] E. I. Kovalevskaya, “Sovmestno ekstremalnye mnogoobraziya”, Matem. zametki, 41:1 (1987), 3–8 | MR | Zbl

[8] G. E. Shilov, Matematicheskii analiz. Funktsii neskolkikh veschestvennykh peremennykh, Nauka, M., 1972 | Zbl

[9] I. Sh. Dzhabbarov, “O mnogomernoi probleme Terri dlya kubcheskogo mnogochlena”, Matem. zametki, 107:5 (2020), 657–673 | DOI | MR | Zbl

[10] I. Sh. Dzhabbarov, “Ob odnom tozhdestve garmonicheskogo analiza i ego prilozheniyakh”, Dokl. AN SSSR, 314:5 (1990), 1052–1054 | MR | Zbl

[11] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR