On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 644-664

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional Schrödinger operator with potential growing at infinity and with a semiclassical small parameter is considered. We obtain estimates via powers of the small parameter for the remainder in the expansion of smooth sufficiently rapidly decaying functions in the exact and asymptotic eigenfunctions. For the asymptotic eigenfunctions, we use a global representation in the form of an Airy function.
Keywords: eigenfunction, asymptotic eigenfunction, Schrödinger operator, semiclassical asymptotics.
@article{MZM_2022_112_5_a1,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and A. A. Shkalikov},
     title = {On {Expansions} in the {Exact} and {Asymptotic} {Eigenfunctions} of the {One-Dimensional} {Schr\"odinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {644--664},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - A. A. Shkalikov
TI  - On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator
JO  - Matematičeskie zametki
PY  - 2022
SP  - 644
EP  - 664
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/
LA  - ru
ID  - MZM_2022_112_5_a1
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A A. A. Shkalikov
%T On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator
%J Matematičeskie zametki
%D 2022
%P 644-664
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/
%G ru
%F MZM_2022_112_5_a1
A. Yu. Anikin; S. Yu. Dobrokhotov; A. A. Shkalikov. On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 644-664. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/