On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 644-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional Schrödinger operator with potential growing at infinity and with a semiclassical small parameter is considered. We obtain estimates via powers of the small parameter for the remainder in the expansion of smooth sufficiently rapidly decaying functions in the exact and asymptotic eigenfunctions. For the asymptotic eigenfunctions, we use a global representation in the form of an Airy function.
Keywords: eigenfunction, asymptotic eigenfunction, Schrödinger operator, semiclassical asymptotics.
@article{MZM_2022_112_5_a1,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and A. A. Shkalikov},
     title = {On {Expansions} in the {Exact} and {Asymptotic} {Eigenfunctions} of the {One-Dimensional} {Schr\"odinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {644--664},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - A. A. Shkalikov
TI  - On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator
JO  - Matematičeskie zametki
PY  - 2022
SP  - 644
EP  - 664
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/
LA  - ru
ID  - MZM_2022_112_5_a1
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A A. A. Shkalikov
%T On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator
%J Matematičeskie zametki
%D 2022
%P 644-664
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/
%G ru
%F MZM_2022_112_5_a1
A. Yu. Anikin; S. Yu. Dobrokhotov; A. A. Shkalikov. On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 644-664. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a1/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[2] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[3] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[4] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Leningradskii un-t, L., 1990 | MR

[5] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | MR | Zbl

[6] A. Erdeii, Asimptoticheskie razlozheniya, Nauka, M., 1962 | MR

[7] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR | Zbl

[8] M. Born, V. Fock, “Beweis des adiabaten Satzes”, Z. Phys., 51 (1928), 165–180 | DOI | Zbl

[9] T. Kato, “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Jpn., 5 (1950), 435–439 | DOI

[10] S. B. Kuksin, A. I. Neishtadt, “O kvantovom usrednenii, kvantovoi teorii Kolmogorova–Arnolda–Mozera i kvantovoi diffuzii”, UMN, 68:2(410) (2013), 145–158 | DOI | MR | Zbl

[11] A. Yu. Anikin, S. Yu. Dobrokhotov, A. V. Tsvetkova, “Funktsii Eiri i perekhod ot kvaziklassicheskogo k ostsillyatornomu priblizheniyu dlya odnomernykh svyazannykh sostoyanii”, TMF, 204:2 (2020), 171–180 | DOI | MR | Zbl

[12] W. N. Everitt, M. Giertz, “Some properties of the domains of certain differential operators”, Proc. London Math. Soc., 23:3 (1971), 301–324 | DOI | MR | Zbl

[13] W. N. Everitt, M. Giertz, “Some inequalities associated with certain differential operators”, Math. Z., 126 (1972), 308–326 | DOI | MR | Zbl

[14] W. N. Everitt, M. Giertz, “On some properties of the powers of a formally self-adjoint differential expression”, Proc. London Math. Soc., 24:3 (1972), 149–170 | DOI | MR | Zbl

[15] W. N. Everitt, M. Giertz, “On some properties of the domains of powers of certain differential operators”, Proc. London Math. Soc., 24:3 (1972), 756–768 | DOI | MR | Zbl

[16] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[17] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Ch. 1, IL, M., 1960 ; Ч. 2, ИЛ, М., 1961 | MR | MR

[18] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, IL, M., 1966 | MR | Zbl

[19] Dzh. Kheding, Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965 | MR | Zbl

[20] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravenenii, URSS, M., 2009 | MR | Zbl

[21] B. Helffer, B. Robert, “Puits de potentiel généralisés et asymptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl