Pointwise Spectral Asymptotics out of the Diagonal near Degeneration Points
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 534-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a uniform (with respect to $x$, $y$) semiclassical asymptotics and estimates for the Schwartz kernel $e_h(x,y;\tau)$ of the spectral projector for a second-order elliptic operator inside a domain under the microhyperbolicity (but not $\xi$-microhyperbolicity) assumption. While such asymptotics for its restriction to the diagonal $e_h(x,x,\tau)$ and, especially, for its trace $\mathsf N_h(\tau)= \int e_h(x,x,\tau)\,dx$ are well known, out-of-diagonal asymptotics are much less studied, especially, uniform ones.
Keywords: microlocal analysis, exact spectral asymptotics.
@article{MZM_2022_112_4_a4,
     author = {V. Ya. Ivrii},
     title = {Pointwise {Spectral} {Asymptotics} out of the {Diagonal} near {Degeneration} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {534--552},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a4/}
}
TY  - JOUR
AU  - V. Ya. Ivrii
TI  - Pointwise Spectral Asymptotics out of the Diagonal near Degeneration Points
JO  - Matematičeskie zametki
PY  - 2022
SP  - 534
EP  - 552
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a4/
LA  - ru
ID  - MZM_2022_112_4_a4
ER  - 
%0 Journal Article
%A V. Ya. Ivrii
%T Pointwise Spectral Asymptotics out of the Diagonal near Degeneration Points
%J Matematičeskie zametki
%D 2022
%P 534-552
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a4/
%G ru
%F MZM_2022_112_4_a4
V. Ya. Ivrii. Pointwise Spectral Asymptotics out of the Diagonal near Degeneration Points. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 534-552. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a4/

[1] V. Ivrii, Pointwise Spectral Asymptotics Out of the Diagonal Near Boundary, 2021, arXiv: 2107.04807

[2] V. Ivrii, Microlocal Analysis, Sharp Spectral, Asymptotics and Applications. I. Semiclassical Microlocal Analysis and Local and Microlocal Semiclassical Asymptotics, Springer, Cham, 2019 | MR | Zbl

[3] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 2001 | MR | Zbl