Asymptotic Solutions of Flow Problems with Boundary Layer of Double-Deck Structures
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 521-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the general scheme of constructing multiscale asymptotic solutions arising in problems of flow over a surface with small irregularities is considered and results of well-known studies in hydrodynamics are clarified.
Keywords: multiscale asymptotics, Navier–Stokes equations, flow problem.
@article{MZM_2022_112_4_a3,
     author = {R. K. Gaydukov and V. G. Danilov},
     title = {Asymptotic {Solutions} of {Flow} {Problems} with {Boundary} {Layer} of {Double-Deck} {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {521--533},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a3/}
}
TY  - JOUR
AU  - R. K. Gaydukov
AU  - V. G. Danilov
TI  - Asymptotic Solutions of Flow Problems with Boundary Layer of Double-Deck Structures
JO  - Matematičeskie zametki
PY  - 2022
SP  - 521
EP  - 533
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a3/
LA  - ru
ID  - MZM_2022_112_4_a3
ER  - 
%0 Journal Article
%A R. K. Gaydukov
%A V. G. Danilov
%T Asymptotic Solutions of Flow Problems with Boundary Layer of Double-Deck Structures
%J Matematičeskie zametki
%D 2022
%P 521-533
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a3/
%G ru
%F MZM_2022_112_4_a3
R. K. Gaydukov; V. G. Danilov. Asymptotic Solutions of Flow Problems with Boundary Layer of Double-Deck Structures. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 521-533. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a3/

[1] V. P. Maslov, “Kogerentnye struktury, rezonansy i asimptoticheskaya needinstvennost dlya uravnenii Nave–Stoksa pri bolshikh chislakh Reinoldsa”, UMN, 41:6 (252) (1986), 19–35 | MR

[2] V. P. Maslov, Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987 | MR | Zbl

[3] V. P. Maslov, A. I. Shafarevich, “Asimptoticheskie resheniya uravnenii Nave–Stoksa i topologicheskie invarianty vektornykh polei i liuvillevykh sloenii”, TMF, 180:2 (2014), 245–263 | DOI | MR | Zbl

[4] A. I. Shafarevich, “Differentsialnye uravneniya na grafakh, opisyvayuschie asimptoticheskie resheniya uravnenii Nave–Stoksa, sosredotochennye v maloi okrestnosti krivoi”, Differents. uravneniya \year 1998, 34:8, 1119–1130 | MR | Zbl

[5] V. P. Maslov, A. I. Shafarevich, “Invarianty Fomenko v asimptoticheskoi teorii uravnenii Nave–Stoksa”, Fundament. i prikl. matem., 20:3 (2015), 191–212 | MR

[6] S. Yu. Dobrokhotov, V. P. Maslov, “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, VINITI, M., 1980, 3–94 | MR | Zbl

[7] H. Flaschka, M. G. Forest, D. W. McLaughlin, “The multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 33:6 (1980), 739–784 | MR | Zbl

[8] I. M. Krichever, “Metod usredneniya dlya dvumernykh «integriruemykh» uravnenii”, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | MR | Zbl

[9] V. G. Danilov, M. V. Makarova, “Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities”, Russ. J. Math. Phys., 2:1 (1994), 49–56 | DOI | MR | Zbl

[10] F. T. Smith, “Laminar flow over a small hump on a flat plate”, J. Fluid Mech., 57 (1973), 803–824 | DOI | Zbl

[11] V. G. Danilov, V. P. Maslov, K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes, Kluwer Acad. Publ., Dordrecht, 1995 | MR

[12] V. G. Danilov, K. Yu. Rossinskii, “Obtekanie ploskoi plastiny s periodicheskimi nerovnostyami maloi amplitudy”, Matem. modelirovanie, 15:11 (2003), 91–109 | MR | Zbl

[13] J. Mauss, A. Achiq, S. Saintlos, “Sur l'analyse conduisant á la théorie de la triple couche”, C. R. Acad. Sci. Paris. Sér. II, 315 (1992), 1611–1614 | Zbl

[14] J. Mauss, “Asymptotic Modelling for separating boundary layers”, Asymptotic Modelling in Fluid Mechanics, Lecture Notes in Phys., 442, Springer, Berlin, 1995, 239–254 | DOI | MR | Zbl

[15] V. G. Danilov, R. K. Gaydukov, “Double–Deck Structure of the Boundary Layer in Problems of Flow around Localized Perturbations on a Plate”, Math. Notes, 98:4 (2015), 561–571 | DOI | Zbl

[16] V. G. Danilov, R. K. Gaydukov, “Vortexes in the Prandtl boundary layer induced by irregularities on a plate”, Russ. J. Math. Phys., 22:2 (2015), 161–173 | DOI | MR | Zbl

[17] R. K. Gaydukov, “Double-deck structure of the boundary layer in the problem of a compressible flow along a plate with small irregularities on the surface”, Eur. J. Mech. B Fluids, 66 (2017), 102–108 | DOI | MR | Zbl

[18] R. K. Gaydukov, “Double-deck structure in the fluid flow problem over plate with small irregularities of time-dependent shape”, Eur. J. Mech. B Fluids, 89 (2021), 401–410 | DOI | MR | Zbl

[19] V. G. Danilov, R. K. Gaydukov, “Double-deck structure of the boundary layer in the problem of flow in an axially symmetric pipe with small irregularities on the wall for large Reynolds numbers”, Russ. J. Math. Phys., 24:1 (2017), 1–18 | DOI | MR | Zbl

[20] R. K. Gaydukov, A. V. Fonareva, “Double-deck structure in the fluid flow induced by a uniformly rotating disk with small symmetric irregularities on its surface”, Eur. J. Mech. B Fluids, 94 (2022), 50–59 | DOI | MR | Zbl

[21] V. Ya. Neiland, “Theory of laminar boundary-layer separation in supersonic flow”, Fluid Dyn., 4 (1969), 33–35 | DOI

[22] A. H. Nayfeh, “Triple-deck structure”, Comp. and Fluids, 20 (1991), 269–292 | DOI | Zbl

[23] K. Stewartson, “Multistructured boundary layers on at plates and related bodies”, Adv. in Appl. Mech., 14 (1974), 145–239 | DOI

[24] R. Yapalparvi, “Double-deck structure revisited”, Eur. J. Mech. B Fluids, 31 (2012), 53–70 | DOI | MR | Zbl

[25] C. Chicchiero, A. Segalini, S. Camarri, “Triple-deck analysis of the steady flow over a rotating disk with surface roughness”, Phys. Rev. Fluids, 6 (2021), 014103 | DOI

[26] M. I. Vishik, L. A. Lyusternik, “Asimptoticheskoe povedenie reshenii lineinykh differentsialnykh uravnenii s bolshimi ili bystro menyayuschimisya koeffitsientami i granichnymi usloviyami”, UMN, 15:4 (94) (1960), 27–95 | MR | Zbl

[27] F. T. Smith, O. R. Burggraf, “On the development of large-sized short-scaled disturbances in boundary layers”, Proc. Royal Soc. Lond. Ser. A, 399 (1985), 25–55 | DOI | Zbl

[28] O. S. Ryzhov, “Triple-deck instability of supersonic boundary layers”, AIAA J., 50:8 (2012), 1733–1741 | DOI

[29] S. Iyer, V. Vicol, “Real analytic local well-posedness for the triple deck”, Comm. Pure Appl. Math., 74:8 (2021), 1641–1684 | DOI | MR | Zbl

[30] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[31] R. K. Gaydukov, D. I. Borisov, “Existence of the Stationary Solution of a Rayleigh-Type Equation”, Math. Notes, 99:5 (2016), 636–642 | DOI | MR | Zbl