Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 625-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the catastrophe germs of smooth mappings determining the three generic (in the sense of mathematical catastrophe theory) singularities of solutions of systems of equations for a one-dimensional isoentropic gas coincide with the germs corresponding to similar singularities of solutions of a linear wave equation with constant coefficients. The conjecture is put forth that such an inheritance for generic singularities of solutions of systems of equations for a isoentropic gas must also take place in spatially multidimensional cases.
Keywords: catastrophe theory, gas dynamics equations, shallow water equations.
@article{MZM_2022_112_4_a10,
     author = {B. I. Suleimanov and A. M. Shavlukov},
     title = {Inheritance of {Generic} {Singularities} of {Solutions} of a {Linear} {Wave} {Equation} by {Solutions} of {Isoentropic} {Gas} {Motion} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {625--640},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a10/}
}
TY  - JOUR
AU  - B. I. Suleimanov
AU  - A. M. Shavlukov
TI  - Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations
JO  - Matematičeskie zametki
PY  - 2022
SP  - 625
EP  - 640
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a10/
LA  - ru
ID  - MZM_2022_112_4_a10
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%A A. M. Shavlukov
%T Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations
%J Matematičeskie zametki
%D 2022
%P 625-640
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a10/
%G ru
%F MZM_2022_112_4_a10
B. I. Suleimanov; A. M. Shavlukov. Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 625-640. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a10/

[1] A. V. Gurevich, A. B. Shvartsburg, Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere, Nauka, M., 1973

[2] A. B. Shvartsburg, Geometricheskaya optika v nelineinoi teorii voln, Nauka, M., 1977

[3] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[4] E. A. Kuznetsov, V. P. Ruban, “Kollaps vikhrevykh linii v gidrodinamike”, ZhETF, 118:4 (2000), 893–905

[5] N. M. Zubarev, “Razvitie neustoichivosti zaryazhennoi poverkhnosti zhidkogo geliya: tochnye resheniya”, Pisma v ZhETF, 71:9 (2000), 534–538

[6] V. P. Maslov, “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, UMN, 35:2 (212) (1980), 252–253

[7] V. V. Bulatov, Yu. V. Vladimirov, V. G. Danilov, S. Yu. Dobrokhotov, “Primer vychisleniya traektorii “glaza” taifuna na osnove gipotezy V. P. Maslova”, Dokl. AN, 338:1 (1994), 102–105 | MR | Zbl

[8] S. Y. Dobrokhotov, “Hugoniot–Maslov chains for solitary vortices of the shallow water equations. I. Derivation of the chains for the case of variable Coriolis forces and reduction to the Hill equation”, Russ. J. Math. Phys., 6:2 (1999), 137–183 | MR

[9] S. Yu. Dobrokhotov, K. V. Pankrashkin, E. S. Semenov, “O gipoteze Maslova o strukture slabykh tochechnykh osobennostei uravnenii melkoi vody”, Dokl. AN, 379:2 (2001), 173–176 | MR

[10] S. Yu. Dobrokhotov, B. Tirotstsi, “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt x$”, UMN, 65:1 (391) (2010), 185–186 | DOI | MR | Zbl

[11] S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, “O zamenakh, privodyaschikh odnomernye sistemy uravnenii melkoi vody k volnovomu uravneniyu so skorostyu zvuka $c^2=x$”, Matem. zametki, 93:5 (2013), 716–727 | DOI | MR | Zbl

[12] D. E. Pelinovsky, E. N. Pelinovsky, E. A. Kartashova, T. G. Talipova, A. Giniyatullin, “Universal power law for the energy spectrum of breaking Riemann waves”, Pisma v ZhETF, 98:4 (2013), 265–269 | DOI

[13] B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws. II. Universality of critical Bebaviour”, Comm. Math. Phys., 267:1 (2006), 117–139 | DOI | MR | Zbl

[14] B. Dubrovin, T. Grava, C. Klein, “On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation”, J. Nonlinear Sci., 19:1 (2009), 57–94 | DOI | MR | Zbl

[15] B. G. Konopelchenko, G. Ortenzi, “Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems”, J. Phys. A, 50:21 (2017), Art. No. 215205 | DOI | MR

[16] B. G. Konopelchenko, G. Ortenzi, “On the plane into plane mappings of hydrodynamic type. Parabolic case”, Rev. Math. Phys., 32:3 (2020), 2050006 | DOI | MR | Zbl

[17] B. G. Konopelchenko, G. Ortenzi, “Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe, and flutter”, Stud. Appl. Math., 130:2 (2013), 167–199 | DOI | MR | Zbl

[18] I. A. Bogaevskii, D. V. Tunitskii, “Osobennosti mnogoznachnykh reshenii kvazilineinykh giperbolicheskikh sistem”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 308, MIAN, M., 2020, 76–87 | DOI | MR

[19] R. N. Garifullin, B. I. Suleimanov, “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, ZhETF, 137:1 (2010), 149–164

[20] V. R. Kudashev, B. I. Suleimanov, “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikladnaya matematika i mekhanika, 65:3 (2001), 456–466 | MR | Zbl

[21] V. R. Kudashev, B. I. Suleimanov, “Osobennosti nekotorykh tipichnykh protsessov samoproizvolnogo padeniya intensivnosti v neustoichivykh sredakh”, Pisma v ZhETF, 62:4 (1995), 358–363

[22] A. Kh. Rakhimov, “Osobennosti reshenii kvazilineinykh uravnenii”, Algebra i analiz, 4:4 (1992), 217–224 | MR | Zbl

[23] A. Kh. Rakhimov, “Osobennosti rimanovykh invariantov”, Funkts. analiz i ego pril., 27:1 (1993), 46–59 | MR | Zbl

[24] B. I. Suleimanov, “Tipichnye singulyarnosti reshenii uravnenii melkoi vody”, Dokl. AN, 442:1 (2012), 24–27 | MR | Zbl

[25] B. I. Suleimanov, A. M. Shavlukov, “Tipichnaya provalnaya osobennost sborki reshenii uravnenii dvizheniya odnomernogo izoentropicheskogo gaza”, Izv. RAN. Ser. fiz., 84:5 (2020), 664–666 | DOI

[26] Yu. K. Alekseev, A. P. Sukhorukov, Vvedenie v teoriyu katastrof, Izd-vo Mosk. un-ta, M., 2000

[27] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 1. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[28] T. Breker, L. Lander, Differentsiruemye rostki i katastrofy, Mir, M., 1977

[29] R. Gilmor, Prikladnaya teoriya katastrof, Kn. 1, Mir, M., 1984

[30] T. Poston, I. Styuart, Teoriya katastrof i ee prilozheniya, Mir, M., 1980

[31] V. D. Sedykh, Matematicheskie metody teorii katastrof, MTsNMO, M., 2021

[32] R. Tom, Ctrukturnaya ustoichivost i morfogenez, Logos, M., 2002

[33] V. V. Goryunov, “Osobennosti proektirovanii polnykh peresechenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 22, VINITI, M., 1983, 167–206 | MR | Zbl

[34] B. I. Suleimanov, Nekotorye tipichnye osobennosti reshenii uravnenii s malym parametrom, Dis. dokt. fiz.-matem. nauk, Institut matematiki s vychislitelnym tsentrom Ufimskogo nauchnogo tsentra RAN, Ufa, 2009 | Zbl

[35] B. Riemann, “Über die Fortflanzung ebener Lüftwellen von endlihenr Schwingungsweite”, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 8 (1860), 43–66

[36] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[37] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR | Zbl