The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 398-411
Voir la notice de l'article provenant de la source Math-Net.Ru
The unique solvability of the inverse problem of recovering the source function in a nonuniformly parabolic equation with many independent variables in a bounded domain is proved. As an additional condition, the integral observation condition is given. The unknown source function can be found by iteration from the operator equation with contraction operator. An example of an the inverse problem for which the results proved in this paper are applicable is presented. The results obtained for the inverse problem are based on the preliminary study of the unique solvability of the corresponding direct problem, which is also of interest in itself.
Keywords:
the inverse problems, nonuniformly parabolic equations, integral observation.
@article{MZM_2022_112_3_a8,
author = {V. L. Kamynin},
title = {The {Inverse} {Problem} of {Recovering} the {Source} {Function} in a {Multidimensional} {Nonuniformly} {Parabolic} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {398--411},
publisher = {mathdoc},
volume = {112},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/}
}
TY - JOUR AU - V. L. Kamynin TI - The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation JO - Matematičeskie zametki PY - 2022 SP - 398 EP - 411 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/ LA - ru ID - MZM_2022_112_3_a8 ER -
V. L. Kamynin. The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 398-411. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/