The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 398-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the inverse problem of recovering the source function in a nonuniformly parabolic equation with many independent variables in a bounded domain is proved. As an additional condition, the integral observation condition is given. The unknown source function can be found by iteration from the operator equation with contraction operator. An example of an the inverse problem for which the results proved in this paper are applicable is presented. The results obtained for the inverse problem are based on the preliminary study of the unique solvability of the corresponding direct problem, which is also of interest in itself.
Keywords: the inverse problems, nonuniformly parabolic equations, integral observation.
@article{MZM_2022_112_3_a8,
     author = {V. L. Kamynin},
     title = {The {Inverse} {Problem} of {Recovering} the {Source} {Function} in a {Multidimensional} {Nonuniformly} {Parabolic} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {398--411},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/}
}
TY  - JOUR
AU  - V. L. Kamynin
TI  - The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation
JO  - Matematičeskie zametki
PY  - 2022
SP  - 398
EP  - 411
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/
LA  - ru
ID  - MZM_2022_112_3_a8
ER  - 
%0 Journal Article
%A V. L. Kamynin
%T The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation
%J Matematičeskie zametki
%D 2022
%P 398-411
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/
%G ru
%F MZM_2022_112_3_a8
V. L. Kamynin. The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 398-411. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a8/

[1] A. I. Prilepko, A. B. Kostin, “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matem. sb., 183:4 (1992), 49–68 | MR | Zbl

[2] A. I. Prilepko, A. B. Kostin, “Otsenka spektralnogo radiusa odnogo operatora i razreshimost obratnykh zadach dlya evolyutsionnykh uravnenii”, Matem. zametki, 53:1 (1993), 89–94 | MR | Zbl

[3] A. I. Prilepko, D. S. Tkachenko, “Svoistva reshenii parabolicheskogo uravneniya i edinstvennost resheniya obratnoi zadachi ob istochnike s integralnym pereopredeleniem”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 562–570 | MR | Zbl

[4] A. I. Prilepko, D. S. Tkachenko, “Fredgolmovost i korrektnaya razreshimost obratnoi zadachi ob istochnike s integralnym pereopredeleniem”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1392–1401 | MR | Zbl

[5] V. L. Kamynin, “Ob obratnoi zadache opredeleniya pravoi chasti v parabolicheskom uravnenii s usloviem integralnogo pereopredeleniya”, Matem. zametki, 77:4 (2005), 522–534 | DOI | MR | Zbl

[6] V. L. Kamynin, T. I. Bukharova, “Obratnaya zadacha opredeleniya funktsii istochnika v nedivergentnom parabolicheskom uravnenii”, Vestn. RUDN. Ser. matem., inform., fiz., 3 (2012), 5–12

[7] A. B. Kostin, “Obratnaya zadacha vosstanovleniya istochnika v parabolicheskom uravnenii po usloviyu nelokalnogo nablyudeniya”, Matem. sb., 204:10 (2013), 3–46 | DOI | MR | Zbl

[8] V. L. Kamynin, A. B. Kostin, “Recovery of multifactor source in parabolic equation with integral type observation”, J. Math. Sci., 244:4 (2019), 608–623 | DOI | MR

[9] A. I. Prilepko, V. L. Kamynin, A. B. Kostin, “Inverse source problem for parabolic equation with the condition of integral observation in time”, J. Inverse Ill-Posed Probl., 26:4 (2018), 523–539 | DOI | MR

[10] V. L. Kamynin, A. B. Kostin, “Determination of the right-hand side term in the degenerate parabolic equation with two variables”, J. Physics. Conf. Ser., 1205 (2019), 012023 | DOI

[11] M. S. Hussein, D. Lesnic, V. L. Kamynin, A. B. Kostin, “Direct and inverse source problem for degenerate parabolic equation”, J. Inverse Ill-Posed Probl., 28:3 (2020), 425–448 | DOI | MR

[12] V. L. Kamynin, “O korrektnoi razreshimosti obratnoi zadachi opredeleniya pravoi chasti v vyrozhdayuschemsya parabolicheskom uravnenii s usloviem integralnogo nablyudeniya”, Matem. zametki, 98:5 (2015), 710–724 | DOI | MR

[13] V. L. Kamynin, “Obratnaya zadacha opredeleniya pravoi chasti v vyrozhdayuschemsya parabolicheskom uravnenii s neogranichennymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 57:5 (2017), 832–841 | DOI | MR

[14] V. L. Kamynin, T. I. Bukharova, “Inverse problems of determination of the right-hand side term in the degenerate higher-order parabolic equation on a plane”, Numerical analysis and its applications, Lecture Notes in Comput. Sci., 10187, Springer, Cham, 2017, 391–397 | DOI | MR

[15] B. Cannarsa, P. Martinez, J. Vancostenoble, Global Carleman Estimates for Degenerate Parabolic Operators with Applications, Mem. Amer. Math. Soc., 239, no. 1133, 2016 | DOI | MR

[16] I. Bouchouev, V. Isakov, “Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets”, Inverse Problems, 15:3 (1999), R95–R116 | DOI | MR

[17] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[18] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[19] O. Arena, “Sopra una classe di equazioni paraboliche”, Boll. Un. Mat. Ital. (4), 2:1 (1969), 9–24 | MR

[20] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR | Zbl