Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 376-383
Voir la notice de l'article provenant de la source Math-Net.Ru
The study of multiplicatively idempotent semirings with additional conditions is continued. It is proved that every multiplicatively idempotent semiring with ideal congruences is isomorphic to the direct product of a Boolean ring and a generalized Boolean lattice. Thus, a new abstract characterization is obtained for the direct products of Boolean rings and generalized Boolean lattices. Examples are given.
Keywords:
semiring, multiplicatively idempotent semiring, ideal congruence, Boolean ring, generalized Boolean lattice.
@article{MZM_2022_112_3_a5,
author = {E. M. Vechtomov and A. A. Petrov},
title = {Multiplicatively {Idempotent} {Semirings} in which {All} {Congruences} {Are} {Ideal}},
journal = {Matemati\v{c}eskie zametki},
pages = {376--383},
publisher = {mathdoc},
volume = {112},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/}
}
TY - JOUR AU - E. M. Vechtomov AU - A. A. Petrov TI - Multiplicatively Idempotent Semirings in which All Congruences Are Ideal JO - Matematičeskie zametki PY - 2022 SP - 376 EP - 383 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/ LA - ru ID - MZM_2022_112_3_a5 ER -
E. M. Vechtomov; A. A. Petrov. Multiplicatively Idempotent Semirings in which All Congruences Are Ideal. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 376-383. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/