Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 376-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of multiplicatively idempotent semirings with additional conditions is continued. It is proved that every multiplicatively idempotent semiring with ideal congruences is isomorphic to the direct product of a Boolean ring and a generalized Boolean lattice. Thus, a new abstract characterization is obtained for the direct products of Boolean rings and generalized Boolean lattices. Examples are given.
Keywords: semiring, multiplicatively idempotent semiring, ideal congruence, Boolean ring, generalized Boolean lattice.
@article{MZM_2022_112_3_a5,
     author = {E. M. Vechtomov and A. A. Petrov},
     title = {Multiplicatively {Idempotent} {Semirings} in which {All} {Congruences} {Are} {Ideal}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {376--383},
     year = {2022},
     volume = {112},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. A. Petrov
TI  - Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
JO  - Matematičeskie zametki
PY  - 2022
SP  - 376
EP  - 383
VL  - 112
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/
LA  - ru
ID  - MZM_2022_112_3_a5
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. A. Petrov
%T Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
%J Matematičeskie zametki
%D 2022
%P 376-383
%V 112
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/
%G ru
%F MZM_2022_112_3_a5
E. M. Vechtomov; A. A. Petrov. Multiplicatively Idempotent Semirings in which All Congruences Are Ideal. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 376-383. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a5/

[1] E. M. Vechtomov, A. A. Petrov, “Prostye idealy v multiplikativno idempotentnykh polukoltsakh”, Matem. zametki, 111:4 (2022), 494–505 | DOI

[2] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR

[3] V. P. Maslov, V. N. Kolokoltsov, Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Nauka, M., 1994 | MR

[4] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982 | MR

[5] L. A. Skornyakov, Elementy teorii struktur, Nauka, M., 1982 | MR

[6] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR

[7] R. Sikorskii, Bulevy algebry, Mir, M., 1969 | MR

[8] E. M. Vechtomov, “Annulyatornye kharakterizatsii bulevykh kolets i bulevykh reshetok”, Matem. zametki, 53:2 (1993), 15–24 | MR | Zbl