Linear Sums on the Floor Function and Three Arithmetic Functions
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 371-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two classes of finite linear sums concerning the floor function and three arithmetic functions are evaluated in closed forms.
Mots-clés : Euler's totient function, Liouville function
Keywords: Jordan's totient function.
@article{MZM_2022_112_3_a4,
     author = {Wenchang Chu},
     title = {Linear {Sums} on the {Floor} {Function} and {Three} {Arithmetic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--375},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a4/}
}
TY  - JOUR
AU  - Wenchang Chu
TI  - Linear Sums on the Floor Function and Three Arithmetic Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 371
EP  - 375
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a4/
LA  - ru
ID  - MZM_2022_112_3_a4
ER  - 
%0 Journal Article
%A Wenchang Chu
%T Linear Sums on the Floor Function and Three Arithmetic Functions
%J Matematičeskie zametki
%D 2022
%P 371-375
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a4/
%G ru
%F MZM_2022_112_3_a4
Wenchang Chu. Linear Sums on the Floor Function and Three Arithmetic Functions. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 371-375. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a4/

[1] M. Bai, W. Chu, N. N. Li, “Generalization of an identity about Euler's totient function”, Bull. Irish Math. Soc., 83 (2019), 5–7 | DOI | MR

[2] M. A. Alekseyev, “Problems and Solutions”, Amer. Math. Monthly, 118:1 (2011), 84–91 ; “Problems and Solutions”, Amer. Math. Monthly, 119:9 (2012), 800–807 | DOI | DOI

[3] L. Comtet, Advanced Combinatorics, D. Reidel Publ., Dordrecht, 1974 | MR

[4] W. Chu, “Jordan's totient function and trigonometric sums”, Studia Sci. Math. Hungar., 57:1 (2020), 40–53 | MR

[5] R. Dineva, The Euler Totient, the Möbius and the Divisor Functions, http://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf

[6] N. Pabhapote, V. Laohakoso, “Combinatorial aspects of the generalized EulerTs totient”, Int. J. Math. Math. Sci., 2010 (2010), Article ID 648165 | MR

[7] R. S. Lehman, “On Liouville's Function”, Math. Comput., 14 (1960), 311–320 | MR

[8] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley Publ., Reading, MA, 1989 | MR

[9] D. M. Burton, Elementary Number Theory, McGraw-Hill, Boston, MA, 2007 | MR