Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 350-359

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{H}$ be a Hilbert space over the field $\mathbb{C}$, and let $\mathcal{B}(\mathcal{H})$ be the $\ast$-algebra of all linear bounded operators in $\mathcal{H}$. Sufficient conditions for the positivity and invertibility of operators from $\mathcal{B}(\mathcal{H})$ are found. An arbitrary symmetry from a von Neumann algebra $\mathcal{A}$ is written as the product $A^{-1}UA$ with a positive invertible $A$ and a self-adjoint unitary $U$ from $\mathcal{A}$. Let $\varphi$ be the weight on a von Neumann algebra $\mathcal{A}$, let $A\in \mathcal{A}$, and let $\|A\|\le 1$. If $A^*A-I\in \mathfrak{N}_{\varphi}$, then $|A|-I\in \mathfrak{N}_{\varphi}$ and, for any isometry $U\in \mathcal{A}$, the inequality $\|A-U\|_{\varphi,2}\ge \||A|-I\|_{\varphi,2}$ holds. If $U$ is a unitary operator from the polar decomposition of the invertible operator $A$, then this inequality becomes an equality.
Keywords: Hilbert space, linear operator, invertible operator, von Neumann algebra, $C^*$-algebra, weight.
@article{MZM_2022_112_3_a2,
     author = {A. M. Bikchentaev},
     title = {Invertibility of the {Operators} on {Hilbert} {Spaces} and {Ideals} in $C^*${-Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--359},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
JO  - Matematičeskie zametki
PY  - 2022
SP  - 350
EP  - 359
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/
LA  - ru
ID  - MZM_2022_112_3_a2
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
%J Matematičeskie zametki
%D 2022
%P 350-359
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/
%G ru
%F MZM_2022_112_3_a2
A. M. Bikchentaev. Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/