Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a2, author = {A. M. Bikchentaev}, title = {Invertibility of the {Operators} on {Hilbert} {Spaces} and {Ideals} in $C^*${-Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {350--359}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/} }
A. M. Bikchentaev. Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/
[1] O. G. Avsyankin, “Ob obratimosti mnogomernykh integralnykh operatorov s biodnorodnymi yadrami”, Matem. zametki, 108:2 (2020), 291–295 | DOI | MR
[2] A. M. Bikchentaev, “Suschestvenno obratimye izmerimye operatory, prisoedinennye k polukonechnoi algebre fon Neimana, i kommutatory”, Sib. matem. zhurn., 63:2 (2022), 272–282 | DOI
[3] A. M. Bikchentaev, “On invertibility of some operator sums”, Lobachevskii J. Math., 33:3 (2012), 216–222 | DOI | MR
[4] A. M. Bikchentaev, “On $\tau$-essentially invertibility of $\tau$-measurable operators”, Int. J. Theor. Phys., 60:2 (2021), 567–575 | DOI | MR
[5] M. Kostadinov, “Injectivity of linear combinations in $\mathcal{B}(\mathcal{H})$”, Electron. J. Linear Algebra, 37 (2021), 359–369 | DOI | MR
[6] M. H. Mortad, “On the invertibility of the sum of operators”, Anal. Math., 46:1 (2020), 133–145 | DOI | MR
[7] X. Ding, Sh. Wu, X. Zhao, “Invertibility and spectral properties of dual Toeplitz operators”, J. Math. Anal. Appl., 484:2 (2020), Article ID 123762 | DOI | MR
[8] A. M. Bikchentaev, Kh. Fauaz, “Raznosti i kommutatory idempotentov v $C^*$-algebrakh”, Izv. vuzov. Matem., 2021, no. 8, 16–26 | DOI
[9] M. Takesaki, Theory of Operator Algebras. I, Operator Algebras and Non-commutative Geometry, 5, Encyclopaedia Math. Sci., 124, Springer-Verlag, Berlin, 2002 | MR
[10] M. Takesaki, Theory of Operator Algebras. II, Operator Algebras and Non-commutative Geometry, 6, Encyclopaedia Math. Sci., 125, Springer-Verlag, Berlin, 2003 | MR
[11] A. N. Sherstnev, Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008
[12] L. Zsidó, “On the equality of operator valued weights”, J. Funct. Anal., 282:9 (2022), Article ID 109416 | DOI | MR
[13] A. Bikchentaev, “Trace inequalities for Rickart $C^*$-algebras”, Positivity, 25:5 (2021), 1943–1957 | DOI | MR
[14] A. M. Bikchentaev, “Polunormy, assotsiirovannye s subadditivnymi vesami na $C^*$-algebrakh”, Matem. zametki, 107:3 (2020), 341–350 | DOI | MR
[15] K. Thomsen, “The factor type of dissipative KMS weights on graph $C^*$-algebras”, J. Noncommut. Geom., 14:3 (2020), 1107–1128 | DOI | MR
[16] B. Blackadar, Operator Algebras. Theory of $C^*$-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III, Encyclopaedia Math. Sci., 122, Springer-Verlag, Berlin, 2006 | MR
[17] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl
[18] F. Hiai, “Matrix analysis: matrix monotone functions, matrix means, and majorization”, Interdiscip. Inform. Sci., 16:2 (2010), 139–248 | MR
[19] W. F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Die Grundlehren Math. Wiss., 207, Springer, New York, 1974 | MR
[20] A. M. Bikchentaev, “Skhodimost po mere i $\tau$-kompaktnost $\tau$-izmerimykh operatorov, assotsiirovannykh s polukonechnoi algebroi fon Neimana”, Izv. vuzov. Matem., 2020, no. 5, 89–93 | DOI
[21] A. M. Bikchentaev, “Ob odnoi lemme F. A. Berezina”, Matem. zametki, 87:5 (2010), 787–791 | DOI | MR
[22] I. Kaplansky, “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR
[23] J. Dixmier, Les algebres d'opérateurs dans l'espace Hilbertien (algebres de von Neumann), Gauthier-Villars, Paris, 1969 | MR
[24] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl