Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 350-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{H}$ be a Hilbert space over the field $\mathbb{C}$, and let $\mathcal{B}(\mathcal{H})$ be the $\ast$-algebra of all linear bounded operators in $\mathcal{H}$. Sufficient conditions for the positivity and invertibility of operators from $\mathcal{B}(\mathcal{H})$ are found. An arbitrary symmetry from a von Neumann algebra $\mathcal{A}$ is written as the product $A^{-1}UA$ with a positive invertible $A$ and a self-adjoint unitary $U$ from $\mathcal{A}$. Let $\varphi$ be the weight on a von Neumann algebra $\mathcal{A}$, let $A\in \mathcal{A}$, and let $\|A\|\le 1$. If $A^*A-I\in \mathfrak{N}_{\varphi}$, then $|A|-I\in \mathfrak{N}_{\varphi}$ and, for any isometry $U\in \mathcal{A}$, the inequality $\|A-U\|_{\varphi,2}\ge \||A|-I\|_{\varphi,2}$ holds. If $U$ is a unitary operator from the polar decomposition of the invertible operator $A$, then this inequality becomes an equality.
Keywords: Hilbert space, linear operator, invertible operator, von Neumann algebra, $C^*$-algebra, weight.
@article{MZM_2022_112_3_a2,
     author = {A. M. Bikchentaev},
     title = {Invertibility of the {Operators} on {Hilbert} {Spaces} and {Ideals} in $C^*${-Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--359},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
JO  - Matematičeskie zametki
PY  - 2022
SP  - 350
EP  - 359
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/
LA  - ru
ID  - MZM_2022_112_3_a2
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
%J Matematičeskie zametki
%D 2022
%P 350-359
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/
%G ru
%F MZM_2022_112_3_a2
A. M. Bikchentaev. Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a2/

[1] O. G. Avsyankin, “Ob obratimosti mnogomernykh integralnykh operatorov s biodnorodnymi yadrami”, Matem. zametki, 108:2 (2020), 291–295 | DOI | MR

[2] A. M. Bikchentaev, “Suschestvenno obratimye izmerimye operatory, prisoedinennye k polukonechnoi algebre fon Neimana, i kommutatory”, Sib. matem. zhurn., 63:2 (2022), 272–282 | DOI

[3] A. M. Bikchentaev, “On invertibility of some operator sums”, Lobachevskii J. Math., 33:3 (2012), 216–222 | DOI | MR

[4] A. M. Bikchentaev, “On $\tau$-essentially invertibility of $\tau$-measurable operators”, Int. J. Theor. Phys., 60:2 (2021), 567–575 | DOI | MR

[5] M. Kostadinov, “Injectivity of linear combinations in $\mathcal{B}(\mathcal{H})$”, Electron. J. Linear Algebra, 37 (2021), 359–369 | DOI | MR

[6] M. H. Mortad, “On the invertibility of the sum of operators”, Anal. Math., 46:1 (2020), 133–145 | DOI | MR

[7] X. Ding, Sh. Wu, X. Zhao, “Invertibility and spectral properties of dual Toeplitz operators”, J. Math. Anal. Appl., 484:2 (2020), Article ID 123762 | DOI | MR

[8] A. M. Bikchentaev, Kh. Fauaz, “Raznosti i kommutatory idempotentov v $C^*$-algebrakh”, Izv. vuzov. Matem., 2021, no. 8, 16–26 | DOI

[9] M. Takesaki, Theory of Operator Algebras. I, Operator Algebras and Non-commutative Geometry, 5, Encyclopaedia Math. Sci., 124, Springer-Verlag, Berlin, 2002 | MR

[10] M. Takesaki, Theory of Operator Algebras. II, Operator Algebras and Non-commutative Geometry, 6, Encyclopaedia Math. Sci., 125, Springer-Verlag, Berlin, 2003 | MR

[11] A. N. Sherstnev, Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008

[12] L. Zsidó, “On the equality of operator valued weights”, J. Funct. Anal., 282:9 (2022), Article ID 109416 | DOI | MR

[13] A. Bikchentaev, “Trace inequalities for Rickart $C^*$-algebras”, Positivity, 25:5 (2021), 1943–1957 | DOI | MR

[14] A. M. Bikchentaev, “Polunormy, assotsiirovannye s subadditivnymi vesami na $C^*$-algebrakh”, Matem. zametki, 107:3 (2020), 341–350 | DOI | MR

[15] K. Thomsen, “The factor type of dissipative KMS weights on graph $C^*$-algebras”, J. Noncommut. Geom., 14:3 (2020), 1107–1128 | DOI | MR

[16] B. Blackadar, Operator Algebras. Theory of $C^*$-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III, Encyclopaedia Math. Sci., 122, Springer-Verlag, Berlin, 2006 | MR

[17] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[18] F. Hiai, “Matrix analysis: matrix monotone functions, matrix means, and majorization”, Interdiscip. Inform. Sci., 16:2 (2010), 139–248 | MR

[19] W. F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Die Grundlehren Math. Wiss., 207, Springer, New York, 1974 | MR

[20] A. M. Bikchentaev, “Skhodimost po mere i $\tau$-kompaktnost $\tau$-izmerimykh operatorov, assotsiirovannykh s polukonechnoi algebroi fon Neimana”, Izv. vuzov. Matem., 2020, no. 5, 89–93 | DOI

[21] A. M. Bikchentaev, “Ob odnoi lemme F. A. Berezina”, Matem. zametki, 87:5 (2010), 787–791 | DOI | MR

[22] I. Kaplansky, “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR

[23] J. Dixmier, Les algebres d'opérateurs dans l'espace Hilbertien (algebres de von Neumann), Gauthier-Villars, Paris, 1969 | MR

[24] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl