Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a8, author = {A. Kh. Khanmamedov and A. F. Mamedova}, title = {A {Remark} on the {Inverse} {Scattering} {Problem} for the {Perturbed} {Hill} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {263--268}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/} }
TY - JOUR AU - A. Kh. Khanmamedov AU - A. F. Mamedova TI - A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation JO - Matematičeskie zametki PY - 2022 SP - 263 EP - 268 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/ LA - ru ID - MZM_2022_112_2_a8 ER -
A. Kh. Khanmamedov; A. F. Mamedova. A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 263-268. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/
[1] G. W. Hill, “On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon”, Acta Math., 8 (1886), 1–36 | DOI | MR
[2] N. E. Firsova, “Obratnaya zadacha rasseyaniya dlya vozmuschennogo operatora Khilla”, Matem. zametki, 18:6 (1975), 831–843 | MR | Zbl
[3] N. E. Firsova, “Pryamaya i obratnaya zadacha rasseyaniya dlya odnomernogo vozmuschennogo operatora Khilla”, Matem. sb., 130 (172):3 (7) (1986), 349–385 | MR | Zbl
[4] A. Boutet de Monvel, I. Egorova, G. Teschle, “Inverse scattering theory for one-dimensional Schrodinger operators with step like finite-gap potentials”, J. Anal. Math., 106:1 (2008), 271–316 | DOI | MR | Zbl
[5] N. E. Firsova, “O reshenii zadachi Koshi dlya uravneniya Kortevega–de Friza s nachalnymi dannymi, yavlyayuschimisya summoi periodicheskoi i bystroubyvayuschei funktsii”, Matem. sb., 135 (177):2 (1988), 261–268 | MR | Zbl
[6] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhauser, Basel, 1986 | MR | Zbl
[7] E. T. Copson, “On the Riemann–Green function”, Arch. Rational Mech. Anal., 1 (1957), 324–348 | DOI | MR