A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 263-268

Voir la notice de l'article provenant de la source Math-Net.Ru

The perturbed Hill equation in which the perturbed potential has finite first moment is considered. An integral equation for the kernel of a triangular representation of the Jost solution is studied. A sharper estimate of the derivative of the kernel is obtained.
Keywords: Hill equation, triangular representation, method of the Riemann function.
Mots-clés : Jost solution
@article{MZM_2022_112_2_a8,
     author = {A. Kh. Khanmamedov and A. F. Mamedova},
     title = {A {Remark} on the {Inverse} {Scattering} {Problem} for the {Perturbed} {Hill} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {263--268},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - A. F. Mamedova
TI  - A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
JO  - Matematičeskie zametki
PY  - 2022
SP  - 263
EP  - 268
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/
LA  - ru
ID  - MZM_2022_112_2_a8
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A A. F. Mamedova
%T A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
%J Matematičeskie zametki
%D 2022
%P 263-268
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/
%G ru
%F MZM_2022_112_2_a8
A. Kh. Khanmamedov; A. F. Mamedova. A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 263-268. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/