A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 263-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

The perturbed Hill equation in which the perturbed potential has finite first moment is considered. An integral equation for the kernel of a triangular representation of the Jost solution is studied. A sharper estimate of the derivative of the kernel is obtained.
Keywords: Hill equation, triangular representation, method of the Riemann function.
Mots-clés : Jost solution
@article{MZM_2022_112_2_a8,
     author = {A. Kh. Khanmamedov and A. F. Mamedova},
     title = {A {Remark} on the {Inverse} {Scattering} {Problem} for the {Perturbed} {Hill} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {263--268},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - A. F. Mamedova
TI  - A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
JO  - Matematičeskie zametki
PY  - 2022
SP  - 263
EP  - 268
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/
LA  - ru
ID  - MZM_2022_112_2_a8
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A A. F. Mamedova
%T A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation
%J Matematičeskie zametki
%D 2022
%P 263-268
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/
%G ru
%F MZM_2022_112_2_a8
A. Kh. Khanmamedov; A. F. Mamedova. A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 263-268. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a8/

[1] G. W. Hill, “On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon”, Acta Math., 8 (1886), 1–36 | DOI | MR

[2] N. E. Firsova, “Obratnaya zadacha rasseyaniya dlya vozmuschennogo operatora Khilla”, Matem. zametki, 18:6 (1975), 831–843 | MR | Zbl

[3] N. E. Firsova, “Pryamaya i obratnaya zadacha rasseyaniya dlya odnomernogo vozmuschennogo operatora Khilla”, Matem. sb., 130 (172):3 (7) (1986), 349–385 | MR | Zbl

[4] A. Boutet de Monvel, I. Egorova, G. Teschle, “Inverse scattering theory for one-dimensional Schrodinger operators with step like finite-gap potentials”, J. Anal. Math., 106:1 (2008), 271–316 | DOI | MR | Zbl

[5] N. E. Firsova, “O reshenii zadachi Koshi dlya uravneniya Kortevega–de Friza s nachalnymi dannymi, yavlyayuschimisya summoi periodicheskoi i bystroubyvayuschei funktsii”, Matem. sb., 135 (177):2 (1988), 261–268 | MR | Zbl

[6] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhauser, Basel, 1986 | MR | Zbl

[7] E. T. Copson, “On the Riemann–Green function”, Arch. Rational Mech. Anal., 1 (1957), 324–348 | DOI | MR