Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a16, author = {A. Yu. Popov and A. P. Solodov}, title = {Optimal {Two-Sided} {Estimates} on the {Interval} $[\pi/2,\pi]$ of the {Sum} of the {Sine} {Series} with {Convex} {Coefficient} {Sequence}}, journal = {Matemati\v{c}eskie zametki}, pages = {317--320}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a16/} }
TY - JOUR AU - A. Yu. Popov AU - A. P. Solodov TI - Optimal Two-Sided Estimates on the Interval $[\pi/2,\pi]$ of the Sum of the Sine Series with Convex Coefficient Sequence JO - Matematičeskie zametki PY - 2022 SP - 317 EP - 320 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a16/ LA - ru ID - MZM_2022_112_2_a16 ER -
%0 Journal Article %A A. Yu. Popov %A A. P. Solodov %T Optimal Two-Sided Estimates on the Interval $[\pi/2,\pi]$ of the Sum of the Sine Series with Convex Coefficient Sequence %J Matematičeskie zametki %D 2022 %P 317-320 %V 112 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a16/ %G ru %F MZM_2022_112_2_a16
A. Yu. Popov; A. P. Solodov. Optimal Two-Sided Estimates on the Interval $[\pi/2,\pi]$ of the Sum of the Sine Series with Convex Coefficient Sequence. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 317-320. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a16/