On the Nilinvariance Property of the Semitopological K-Theory of dg-Categories and Its Applications
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 312-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: noncommutative Hodge theory, dg-category, K-theory, cyclic homology, lattice conjecture.
@article{MZM_2022_112_2_a15,
     author = {A. A. Konovalov},
     title = {On the {Nilinvariance} {Property} of the {Semitopological} {K-Theory} of {dg-Categories} and {Its} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {312--316},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/}
}
TY  - JOUR
AU  - A. A. Konovalov
TI  - On the Nilinvariance Property of the Semitopological K-Theory of dg-Categories and Its Applications
JO  - Matematičeskie zametki
PY  - 2022
SP  - 312
EP  - 316
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/
LA  - ru
ID  - MZM_2022_112_2_a15
ER  - 
%0 Journal Article
%A A. A. Konovalov
%T On the Nilinvariance Property of the Semitopological K-Theory of dg-Categories and Its Applications
%J Matematičeskie zametki
%D 2022
%P 312-316
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/
%G ru
%F MZM_2022_112_2_a15
A. A. Konovalov. On the Nilinvariance Property of the Semitopological K-Theory of dg-Categories and Its Applications. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 312-316. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/

[1] A. Blanc, Compositio Math., 152 (2016), 489–555 | DOI | MR | Zbl

[2] A. Konovalov, Nilpotent Invariance of Semi-Topological K-Theory of dg-Algebras and the Lattice Conjecture, 2021, arXiv: 2102.01566

[3] E. Elmanto, V. Sosnilo, “On nnlpotent extensions of $\infty$-categories and the cyclotomic trace”, Int. Math. Res. Notices, 2021 | DOI

[4] B. Antieau, J. Heller, Proc. Amer. Math. Soc., 146:10 (2018), 4211–4219 | DOI | MR | Zbl

[5] E. Friedlander, M. Walker, Amer. J. Math., 123:5 (2001), 779–810 | DOI | MR | Zbl

[6] M. Land, G. Tamme, Ann. of Math. (2), 190:3 (2019), 877–930 | DOI | MR | Zbl

[7] T. Goodwillie, Topology, 24:2 (1985), 187–215 | DOI | MR | Zbl

[8] B. Dundas, T. Goodwillie, R. McCarthy, The Local Structure of Algebraic K-Theory, Springer, London, 2012 | MR