Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a15, author = {A. A. Konovalov}, title = {On the {Nilinvariance} {Property} of the {Semitopological} {K-Theory} of {dg-Categories} and {Its} {Applications}}, journal = {Matemati\v{c}eskie zametki}, pages = {312--316}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/} }
TY - JOUR AU - A. A. Konovalov TI - On the Nilinvariance Property of the Semitopological K-Theory of dg-Categories and Its Applications JO - Matematičeskie zametki PY - 2022 SP - 312 EP - 316 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/ LA - ru ID - MZM_2022_112_2_a15 ER -
A. A. Konovalov. On the Nilinvariance Property of the Semitopological K-Theory of dg-Categories and Its Applications. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 312-316. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a15/
[1] A. Blanc, Compositio Math., 152 (2016), 489–555 | DOI | MR | Zbl
[2] A. Konovalov, Nilpotent Invariance of Semi-Topological K-Theory of dg-Algebras and the Lattice Conjecture, 2021, arXiv: 2102.01566
[3] E. Elmanto, V. Sosnilo, “On nnlpotent extensions of $\infty$-categories and the cyclotomic trace”, Int. Math. Res. Notices, 2021 | DOI
[4] B. Antieau, J. Heller, Proc. Amer. Math. Soc., 146:10 (2018), 4211–4219 | DOI | MR | Zbl
[5] E. Friedlander, M. Walker, Amer. J. Math., 123:5 (2001), 779–810 | DOI | MR | Zbl
[6] M. Land, G. Tamme, Ann. of Math. (2), 190:3 (2019), 877–930 | DOI | MR | Zbl
[7] T. Goodwillie, Topology, 24:2 (1985), 187–215 | DOI | MR | Zbl
[8] B. Dundas, T. Goodwillie, R. McCarthy, The Local Structure of Algebraic K-Theory, Springer, London, 2012 | MR