Dynamics of Moments and Stationary States for GKSL Equations of Classical Diffusion Type
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 307-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: GKSL equation, irreversible quantum dynamics
Mots-clés : exact solution.
@article{MZM_2022_112_2_a14,
     author = {D. D. Ivanov and A. E. Teretenkov},
     title = {Dynamics of {Moments} and {Stationary} {States} for {GKSL} {Equations} of {Classical} {Diffusion} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {307--311},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a14/}
}
TY  - JOUR
AU  - D. D. Ivanov
AU  - A. E. Teretenkov
TI  - Dynamics of Moments and Stationary States for GKSL Equations of Classical Diffusion Type
JO  - Matematičeskie zametki
PY  - 2022
SP  - 307
EP  - 311
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a14/
LA  - ru
ID  - MZM_2022_112_2_a14
ER  - 
%0 Journal Article
%A D. D. Ivanov
%A A. E. Teretenkov
%T Dynamics of Moments and Stationary States for GKSL Equations of Classical Diffusion Type
%J Matematičeskie zametki
%D 2022
%P 307-311
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a14/
%G ru
%F MZM_2022_112_2_a14
D. D. Ivanov; A. E. Teretenkov. Dynamics of Moments and Stationary States for GKSL Equations of Classical Diffusion Type. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 307-311. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a14/

[1] A. E. Teretenkov, Matem. zametki, 106:1 (2019), 149–153 | DOI | MR | Zbl

[2] A. E. Teretenkov, Matem. zametki, 107:4 (2020), 637–640 | DOI | MR | Zbl

[3] Yu. A. Nosal, A. E. Teretenkov, Matem. zametki, 108:6 (2020), 947–951 | DOI | MR | Zbl

[4] T. Linowski, A. Teretenkov, L. Rudnicki, Dissipative Evolution of Covariance Matrix Beyond Quadratic Order to Probability and Statistics, 2021, arXiv: 2105.12644

[5] A. Kossakowski, Rep. Math. Phys., 3:4 (1972), 247–274 | DOI | MR

[6] B. Kummerer, H. Maassen, Comm. Math. Phys., 109:1 (1987), 1–22 | DOI | MR | Zbl

[7] A. S. Holevo, J. Math. Phys., 37:4 (1996), 1812–1832 | DOI | MR | Zbl

[8] A. S. Holevo, Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, Springer, Berlin, 1998, 67–81 | MR

[9] V. Gorini, A. Kossakowski, E. C. D. Sudarshan, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR | Zbl

[10] G. Lindblad, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[11] A. E. Teretenkov, Matem. zametki, 100:4 (2016), 636–640 | DOI | MR | Zbl

[12] A. E. Teretenkov, Math. Notes, 101:2 (2017), 341–351 | DOI | MR | Zbl

[13] A. E. Teretenkov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), Paper no. 1930001 | MR

[14] M. O. Skalli, M. S. Zubairi, Kvantovaya optika, Fizmatlit, M., 2003

[15] A. E. Teretenkov, Matem. zametki, 102:6 (2017), 908–916 | DOI | MR | Zbl

[16] L. A. Takhtadzhyan, Kvantovaya mekhanika dlya matematikov, RKhD, M.-Izhevsk, 2011

[17] K. I. Sato, “Basic results on Lévy processes”, Lévy Processes, Birkhäuser Boston, Boston, MA, 2001 | MR

[18] J. Agredo, F. Fagnola, D. Poletti, Open Sys. Information Dyn., 28:01 (2021), 2150001 | DOI | MR | Zbl

[19] J. Agredo, F. Fagnola, D. Poletti, The decoherence-free subalgebra of Gaussian Quantum Markov Semigroups, 2021, arXiv: 2112.13781 | Zbl

[20] T. Barthel, Y. Zhang, Solving Quasi-Free and Quadratic Lindblad Master Equations for Open Fermionic and Bosonic Systems, 2021, arXiv: 2112.08344