The Reproducing Kernel Viewpoints of General Ritz--Galerkin Approximation
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 279-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the new concepts of strictly positive definite functional and reproducing kernel functional space. We establish a connection between the strictly positive definite functional and the Ritz–Galerkin approximation. We prove a posteriori error estimate of the finite element method based on the reproducing kernel viewpoints.
Keywords: reproducing kernel, native spaces, Ritz–Galerkin approximation, functional, finite element.
@article{MZM_2022_112_2_a10,
     author = {Zhiyong Liu and Qiuyan Xu},
     title = {The {Reproducing} {Kernel} {Viewpoints} of {General} {Ritz--Galerkin} {Approximation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {279--290},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a10/}
}
TY  - JOUR
AU  - Zhiyong Liu
AU  - Qiuyan Xu
TI  - The Reproducing Kernel Viewpoints of General Ritz--Galerkin Approximation
JO  - Matematičeskie zametki
PY  - 2022
SP  - 279
EP  - 290
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a10/
LA  - ru
ID  - MZM_2022_112_2_a10
ER  - 
%0 Journal Article
%A Zhiyong Liu
%A Qiuyan Xu
%T The Reproducing Kernel Viewpoints of General Ritz--Galerkin Approximation
%J Matematičeskie zametki
%D 2022
%P 279-290
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a10/
%G ru
%F MZM_2022_112_2_a10
Zhiyong Liu; Qiuyan Xu. The Reproducing Kernel Viewpoints of General Ritz--Galerkin Approximation. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 279-290. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a10/

[1] S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications, Dev. Math., 44, Springer, Berlin, 2016 | MR | Zbl

[2] H. Wendland, Scattered Data Approximation, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[3] N. Aronshain, “Teoriya vosproizvodyaschikh yader”, Matematika, 7:2 (1963), 67–130 | MR

[4] Y. Sawano, “Pasting reproducing kernel Hilbert spaces”, Jaen J. Approx., 3:1 (2011), 135–141 | MR | Zbl

[5] R. Schaback, “A unified theory of radial basis functions: native Hilbert spaces for radial basis functions. II”, J. Comp. Appl. Math., 121:1–2 (2000), 165–177 | DOI | MR | Zbl

[6] R. A. Adams, Dzh. Dzh. F. Furne, Prostranstva Soboleva, Tamara Rozhkovskaya, Novosibirsk, 2009 | MR

[7] S. Brenner, L. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 65, Springer, New York, 2008 | MR

[8] M. Izuki, Y. Sawano, “A Criterion of Sampling Theorems on Banach Function Spaces”, Tokyo J. Math., 36:1 (2013), 131–145 | DOI | MR | Zbl

[9] F. J. Narcowich, J. D. Ward, H. Wendland, “Sobolev error estimate and a Bernstein inequality for scattered data interpolation via radial basis functions”, Constr. Approx., 24 (2006), 175–186 | DOI | MR | Zbl

[10] K. Böhmer, R. Schaback, “A nonlinear discretization theory”, J. Comput. Appl. Math., 254 (2013), 204–219 | DOI | MR | Zbl

[11] R. Schaback, “Convergence of unsymmetric kernel-based meshless collocation methods”, SIAM J. Numer. Anal., 45:1 (2007), 333–351 | DOI | MR | Zbl

[12] R. Schaback, “Unsymmetric meshless methods for operator equations”, Numer. Math., 114 (2010), 629–651 | DOI | MR | Zbl