Conical Greedy Algorithm
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

A weak conical greedy algorithm is introduced with respect to an arbitrary positive complete dictionary in a Hilbert space; this algorithm gives an approximation of an arbitrary space element by a combination of dictionary elements with nonnegative coefficients. The convergence of this algorithm is proved and an estimate of the convergence rate for the elements of the convex hull of the dictionary is given.
Keywords: greedy algorithm, cone, dictionary, approximation.
Mots-clés : convergence
@article{MZM_2022_112_2_a0,
     author = {M. A. Valov},
     title = {Conical {Greedy} {Algorithm}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a0/}
}
TY  - JOUR
AU  - M. A. Valov
TI  - Conical Greedy Algorithm
JO  - Matematičeskie zametki
PY  - 2022
SP  - 163
EP  - 169
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a0/
LA  - ru
ID  - MZM_2022_112_2_a0
ER  - 
%0 Journal Article
%A M. A. Valov
%T Conical Greedy Algorithm
%J Matematičeskie zametki
%D 2022
%P 163-169
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a0/
%G ru
%F MZM_2022_112_2_a0
M. A. Valov. Conical Greedy Algorithm. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a0/

[1] J. J. Moreau, “Décomposition orthogonale d'un espace hilbertien selon deux cónes mutuellement polaires”, C. R. Acad. Sci. Paris, 255 (1962), 238–240 | MR | Zbl

[2] V. N. Temlyakov, Greedy Approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[3] E. D. Livshits, “O vozvratnom zhadnom algoritme”, Izv. RAN. Ser. matem., 70:1 (2006), 95–116 | DOI | MR | Zbl

[4] E. D. Livshits, “Ob $n$-chlennom priblizhenii s neotritsatelnymi koeffitsientami”, Matem. zametki, 82:3 (2007), 373–382 | DOI | MR | Zbl

[5] P. A. Borodin, “Primer raskhodimosti zhadnogo algoritma otnositelno nesimmetrichnogo slovarya”, Matem. zametki, 109:3 (2021), 352–360 | DOI | MR | Zbl

[6] V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12 (2000), 213–227 | DOI | MR | Zbl