Conical Greedy Algorithm
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 163-169
Voir la notice de l'article provenant de la source Math-Net.Ru
A weak conical greedy algorithm is introduced with respect to an arbitrary positive complete dictionary in a Hilbert space; this algorithm gives an approximation of an arbitrary space element by a combination of dictionary elements with nonnegative coefficients. The convergence of this algorithm is proved and an estimate of the convergence rate for the elements of the convex hull of the dictionary is given.
Keywords:
greedy algorithm, cone, dictionary, approximation.
Mots-clés : convergence
Mots-clés : convergence
@article{MZM_2022_112_2_a0,
author = {M. A. Valov},
title = {Conical {Greedy} {Algorithm}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--169},
publisher = {mathdoc},
volume = {112},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a0/}
}
M. A. Valov. Conical Greedy Algorithm. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a0/