On a Class of Integrable Evolution Vector Equations of 3rd Order
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

A symmetry approach to the classification of nonlinear exactly integrable evolution vector equations of 3rd order of special kind is presented.
Keywords: integrable equations, evolution vector equations.
@article{MZM_2022_112_1_a8,
     author = {A. G. Meshkov and M. Yu. Balakhnev},
     title = {On a {Class} of {Integrable} {Evolution} {Vector} {Equations} of 3rd {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a8/}
}
TY  - JOUR
AU  - A. G. Meshkov
AU  - M. Yu. Balakhnev
TI  - On a Class of Integrable Evolution Vector Equations of 3rd Order
JO  - Matematičeskie zametki
PY  - 2022
SP  - 88
EP  - 94
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a8/
LA  - ru
ID  - MZM_2022_112_1_a8
ER  - 
%0 Journal Article
%A A. G. Meshkov
%A M. Yu. Balakhnev
%T On a Class of Integrable Evolution Vector Equations of 3rd Order
%J Matematičeskie zametki
%D 2022
%P 88-94
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a8/
%G ru
%F MZM_2022_112_1_a8
A. G. Meshkov; M. Yu. Balakhnev. On a Class of Integrable Evolution Vector Equations of 3rd Order. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 88-94. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a8/

[1] A. G. Meshkov, V. V. Sokolov, “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, TMF, 139:2 (2004), 192–208 | DOI | MR | Zbl

[2] M. Yu. Balakhnev, “Integriruemye vektornye izotropnye uravneniya, dopuskayuschie differentsialnye podstanovki pervogo poryadka”, Matem. zametki, 94:3 (2013), 323–330 | DOI | MR | Zbl

[3] N. Kh. Ibragimov, A. B. Shabat, “O beskonechnykh algebrakh Li–Beklunda”, Funkts. analiz i ego pril., 14:4 (1980), 79–80 | MR | Zbl

[4] V. V. Sokolov, A. B. Shabat, “Classification of integrable evolution euations”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 4, Harwood Academic Publ., Chur, 1984, 221–280 | MR

[5] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, Naukova dumka, Kiev, 1990, 213–279 | MR

[6] H. H. Chen, Y. C. Lee, C. S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20:3-4 (1979), 490–492 | DOI | MR | Zbl

[7] A. G. Meshkov, “Necessary conditions of the integrability”, Inverse Problems, 10:3 (1994), 635–653 | DOI | MR | Zbl

[8] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl

[9] A. G. Meshkov, M. Ju. Balakhnev, “Integrable anisotropic evolution equations on a sphere”, SIGMA, 1 (2005), 027, 11 pp. | DOI | MR | Zbl

[10] M. Yu. Balakhnev, “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, TMF, 142:1 (2005), 13–20 | DOI | MR | Zbl

[11] M. Yu. Balakhnev, A. G. Meshkov, “Integriruemye vektornye evolyutsionnye uravneniya, imeyuschie sokhranyayuschiesya plotnosti nulevogo poryadka”, TMF, 164:2 (2010), 207–213 | DOI | Zbl

[12] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR