Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_1_a8, author = {A. G. Meshkov and M. Yu. Balakhnev}, title = {On a {Class} of {Integrable} {Evolution} {Vector} {Equations} of 3rd {Order}}, journal = {Matemati\v{c}eskie zametki}, pages = {88--94}, publisher = {mathdoc}, volume = {112}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a8/} }
A. G. Meshkov; M. Yu. Balakhnev. On a Class of Integrable Evolution Vector Equations of 3rd Order. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 88-94. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a8/
[1] A. G. Meshkov, V. V. Sokolov, “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, TMF, 139:2 (2004), 192–208 | DOI | MR | Zbl
[2] M. Yu. Balakhnev, “Integriruemye vektornye izotropnye uravneniya, dopuskayuschie differentsialnye podstanovki pervogo poryadka”, Matem. zametki, 94:3 (2013), 323–330 | DOI | MR | Zbl
[3] N. Kh. Ibragimov, A. B. Shabat, “O beskonechnykh algebrakh Li–Beklunda”, Funkts. analiz i ego pril., 14:4 (1980), 79–80 | MR | Zbl
[4] V. V. Sokolov, A. B. Shabat, “Classification of integrable evolution euations”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 4, Harwood Academic Publ., Chur, 1984, 221–280 | MR
[5] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, Naukova dumka, Kiev, 1990, 213–279 | MR
[6] H. H. Chen, Y. C. Lee, C. S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20:3-4 (1979), 490–492 | DOI | MR | Zbl
[7] A. G. Meshkov, “Necessary conditions of the integrability”, Inverse Problems, 10:3 (1994), 635–653 | DOI | MR | Zbl
[8] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl
[9] A. G. Meshkov, M. Ju. Balakhnev, “Integrable anisotropic evolution equations on a sphere”, SIGMA, 1 (2005), 027, 11 pp. | DOI | MR | Zbl
[10] M. Yu. Balakhnev, “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, TMF, 142:1 (2005), 13–20 | DOI | MR | Zbl
[11] M. Yu. Balakhnev, A. G. Meshkov, “Integriruemye vektornye evolyutsionnye uravneniya, imeyuschie sokhranyayuschiesya plotnosti nulevogo poryadka”, TMF, 164:2 (2010), 207–213 | DOI | Zbl
[12] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR