On the Equivalence of Borel Sets
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 83-87
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem on the existence of a definable selector for the relation $E_{\aleph_0}$ on the $\boldsymbol{\Delta}^0_2$-sets of the Baire space $\omega^\omega$ is proved.
Keywords:
$\boldsymbol{\Delta}^0_2$-set, selector,
equality modulo a countable set.
@article{MZM_2022_112_1_a7,
author = {S. V. Medvedev},
title = {On the {Equivalence} of {Borel} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {83--87},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/}
}
S. V. Medvedev. On the Equivalence of Borel Sets. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 83-87. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/