On the Equivalence of Borel Sets
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 83-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the existence of a definable selector for the relation $E_{\aleph_0}$ on the $\boldsymbol{\Delta}^0_2$-sets of the Baire space $\omega^\omega$ is proved.
Keywords: $\boldsymbol{\Delta}^0_2$-set, selector, equality modulo a countable set.
@article{MZM_2022_112_1_a7,
     author = {S. V. Medvedev},
     title = {On the {Equivalence} of {Borel} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/}
}
TY  - JOUR
AU  - S. V. Medvedev
TI  - On the Equivalence of Borel Sets
JO  - Matematičeskie zametki
PY  - 2022
SP  - 83
EP  - 87
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/
LA  - ru
ID  - MZM_2022_112_1_a7
ER  - 
%0 Journal Article
%A S. V. Medvedev
%T On the Equivalence of Borel Sets
%J Matematičeskie zametki
%D 2022
%P 83-87
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/
%G ru
%F MZM_2022_112_1_a7
S. V. Medvedev. On the Equivalence of Borel Sets. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 83-87. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/

[1] V. G. Kanovei, V. A. Lyubetskii, “Ob otnoshenii ravenstva s tochnostyu do schetnogo mnozhestva”, Matem. zametki, 108:4 (2020), 629–631 | DOI | MR | Zbl

[2] S. Müller, P. Schlicht, D. Schrittesser, T. Weinert, Lebesgue's Density Theorem and Definable Selectors for Ideals, 2021, arXiv: 1811.06489v5

[3] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl

[4] S. V. Medvedev, “On piecewise continuous mappings of paracompact spaces”, Sib. elektron. matem. izv., 15 (2018), 214–222 | DOI | MR | Zbl