On the Equivalence of Borel Sets
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 83-87
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem on the existence of a definable selector for the relation $E_{\aleph_0}$ on the $\boldsymbol{\Delta}^0_2$-sets of the Baire space $\omega^\omega$ is proved.
Keywords:
$\boldsymbol{\Delta}^0_2$-set, selector, equality modulo a countable set.
@article{MZM_2022_112_1_a7,
author = {S. V. Medvedev},
title = {On the {Equivalence} of {Borel} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {83--87},
year = {2022},
volume = {112},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/}
}
S. V. Medvedev. On the Equivalence of Borel Sets. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 83-87. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a7/
[1] V. G. Kanovei, V. A. Lyubetskii, “Ob otnoshenii ravenstva s tochnostyu do schetnogo mnozhestva”, Matem. zametki, 108:4 (2020), 629–631 | DOI | MR | Zbl
[2] S. Müller, P. Schlicht, D. Schrittesser, T. Weinert, Lebesgue's Density Theorem and Definable Selectors for Ideals, 2021, arXiv: 1811.06489v5
[3] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl
[4] S. V. Medvedev, “On piecewise continuous mappings of paracompact spaces”, Sib. elektron. matem. izv., 15 (2018), 214–222 | DOI | MR | Zbl