On~$Z$-Sets in the Space of Idempotent Probability Measures
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 904-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the spaces of probability measures and of idempotent probability measures on the same metrizable compact space are homeomorphic. An example is given which shows that the functor of probability measures differs from that of idempotent probability measures. A criterion for the metrizability of a compact Hausdorff space in terms of the functor of idempotent probability measures is obtained. Subspaces of spaces of idempotent probability measures that are $Z$-sets are distinguished.
Keywords: space of probability measures, space of idempotent probability measures, functor of idempotent probability measures, Hilbert cube, Z-set.
@article{MZM_2022_111_6_a9,
     author = {Kh. Kholturaev},
     title = {On~$Z${-Sets} in the {Space} of {Idempotent} {Probability} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--920},
     publisher = {mathdoc},
     volume = {111},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a9/}
}
TY  - JOUR
AU  - Kh. Kholturaev
TI  - On~$Z$-Sets in the Space of Idempotent Probability Measures
JO  - Matematičeskie zametki
PY  - 2022
SP  - 904
EP  - 920
VL  - 111
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a9/
LA  - ru
ID  - MZM_2022_111_6_a9
ER  - 
%0 Journal Article
%A Kh. Kholturaev
%T On~$Z$-Sets in the Space of Idempotent Probability Measures
%J Matematičeskie zametki
%D 2022
%P 904-920
%V 111
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a9/
%G ru
%F MZM_2022_111_6_a9
Kh. Kholturaev. On~$Z$-Sets in the Space of Idempotent Probability Measures. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 904-920. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a9/

[1] V. N. Kolokoltsov, “Idempotentnye struktury v optimizatsii”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 65, VINITI, M., 1999, 118–174 | MR | Zbl

[2] V. N. Kolokoltsov, V. P. Maslov, “Idempotentnyi analiz kak apparat teorii upravleniya. I”, Funkts. analiz i ego pril., 23:1 (1989), 1–14 | MR | Zbl

[3] V. N. Kolokoltsov, V. P. Maslov, “Idempotentnyi analiz kak apparat teorii upravleniya i optimalnogo sinteza. 2”, Funkts. analiz i ego pril., 23:4 (1989), 53–62 | MR | Zbl

[4] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod”, Matem. zametki, 69:5 (2001), 758–797 | DOI | MR | Zbl

[5] J. P. Aubin, Dynamic Economic Theory. A Viability Approach, Springer-Verlag, Berlin, 1997 | MR | Zbl

[6] P. Bernhard, “Max-plus algebra and mathematical fear in dynamic optimization”, Set-Valued Anal., 8:1-2 (2000), 71–84 | DOI | MR | Zbl

[7] G. L. Litvinov, “The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 1–17 ; 2003, arXiv: math/0501038 | MR | Zbl

[8] M. M. Zarichnyi, “Prostranstva i otobrazheniya idempotentnykh mer”, Izv. RAN. Ser. matem., 74:3 (2010), 45–64 | DOI | MR | Zbl

[9] V. V. Fedorchuk, “Veroyatnostnye mery i absolyutnye retrakty”, Dokl. AN SSSR, 255:6 (1980), 1329–1333 | MR | Zbl

[10] V. V. Fedorchuk, “Kovariantnye funktory v kategorii kompaktov, absolyutnye retrakty i $Q$-mnogoobraziya”, UMN, 36:3 (219) (1981), 177–195 | MR | Zbl

[11] V. V. Fedorchuk, “Veroyatnostnye mery v topologii”, UMN, 46:1 (277) (1991), 41–80 | MR | Zbl

[12] A. A. Zaitov, I. I. Tozhiev, “Funktsionalnye predstavleniya zamknutykh podmnozhestv kompakta”, Uzbekskii matem. zhurn., 2010, no. 1, 53–63 | MR

[13] A. A. Zaitov, A. Ya. Ishmetov, “O monade, porozhdennoi funktorom $I_{\beta}$”, Vestn. NUUz, 2013, no. 2, 61–64

[14] A. A. Zaitov, Kh. F. Kholturaev, “O vzaimosvyazi funktorov $P$ veroyatnostnykh mer i $I$ idempotentnykh veroyatnostnykh mer”, Uzbekskii matem. zhurn., 2014, no. 4, 36–45 | MR

[15] A. A. Zaitov, A. Ya. Ishmetov, “Gomotopicheskie svoistva prostranstva $I_f(X)$ idempotentnykh veroyatnostnykh mer”, Matem. zametki, 106:4 (2019), 531–542 | DOI | MR | Zbl

[16] A. Ya. Ishmetov, “O funktore idempotentnykh veroyatnostnykh mer s kompaktnymi nositelyami”, Uzbekskii matem. zhurn., 2010, no. 1, 72–80 | MR

[17] T. Radul, Idempotent Measures: Absolute Retracts and Soft Maps, 2018, arXiv: 1810.09140v1

[18] A. A. Zaitov, “Geometricheskie i topologicheskie svoistva podprostranstva $P_f(X)$ veroyatnostnykh mer”, Izv. vuzov. Matem., 2019, no. 10, 28–37 | DOI | Zbl

[19] A. A. Zaitov, “On a metric on the space of idempotent probability measures”, Appl. Gen. Topol., 21:1 (2020), 35–51 | DOI | MR | Zbl

[20] A. A. Zaitov, “O funktore slabo additivnykh $\tau$-gladkikh funktsionalov”, Geometriya i topologiya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 197, VINITI RAN, M., 2021, 36–45 | DOI

[21] A. A. Zaitov, “Order-preserving variants of the basic principles of functional analysis”, Fund. J. Math. Appl., 2:1 (2019), 10–17 | DOI

[22] V. A. Artamanov, L. A. Skornyakov, L. N. Mevrin, E. G. Shulgeifer, Obschaya algebra, T. 2, Nauka, M., 1991

[23] D. W. Curtis, “Boundary sets of the Hilbert cube”, Topology Appl., 20:3 (1985), 201–221 | DOI | MR | Zbl