Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_6_a6, author = {A. L. Skubachevskii and N. O. Ivanov}, title = {Generalized {Solutions} of the {Second} {Boundary-Value} {Problem} for {Differential-Difference} {Equations} with {Variable} {Coefficients} on {Intervals} of {Noninteger} {Length}}, journal = {Matemati\v{c}eskie zametki}, pages = {873--886}, publisher = {mathdoc}, volume = {111}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a6/} }
TY - JOUR AU - A. L. Skubachevskii AU - N. O. Ivanov TI - Generalized Solutions of the Second Boundary-Value Problem for Differential-Difference Equations with Variable Coefficients on Intervals of Noninteger Length JO - Matematičeskie zametki PY - 2022 SP - 873 EP - 886 VL - 111 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a6/ LA - ru ID - MZM_2022_111_6_a6 ER -
%0 Journal Article %A A. L. Skubachevskii %A N. O. Ivanov %T Generalized Solutions of the Second Boundary-Value Problem for Differential-Difference Equations with Variable Coefficients on Intervals of Noninteger Length %J Matematičeskie zametki %D 2022 %P 873-886 %V 111 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a6/ %G ru %F MZM_2022_111_6_a6
A. L. Skubachevskii; N. O. Ivanov. Generalized Solutions of the Second Boundary-Value Problem for Differential-Difference Equations with Variable Coefficients on Intervals of Noninteger Length. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 873-886. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a6/
[1] Yu. S. Osipov, “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR | Zbl
[2] N. N. Krasovskii, Teoriya upravleniya dvizheniya. Lineinye sistemy, Nauka, M., 1968 | MR | Zbl
[3] A. V. Kryazhimskii, V. I. Maksimov, Yu. S. Osipov, “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. matem. mekh., 47:6 (1983), 883–890 | MR
[4] A. L. Skubachevskii, “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Dokl. AN, 335:2 (1994), 157–160 | MR | Zbl
[5] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel, 1997 | MR | Zbl
[6] G. A. Kamenskii, A. D. Myshkis, “K postanovke kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom i neskolkimi starshimi chlenami”, Differents. uravneniya, 10:3 (1974), 409–418 | MR | Zbl
[7] A. G. Kamenskii, “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Differents. uravneniya, 12:5 (1976), 815–824 | MR | Zbl
[8] D. A. Neverova, A. L. Skubachevskii, “O klassicheskikh i obobschennykh resheniyakh kraevykh zadach dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Matem. zametki, 94:5 (2013), 702–719 | DOI | MR | Zbl
[9] D. A. Neverova, “Generalized and classical solutions to the second and third boundary-value problem for differential-difference equations”, Funct. Differ. Equ., 21:1-2 (2014), 47–65 | MR | Zbl
[10] G. A. Kamenskii, A. D. Myshkis, A. L. Skubachevskii, “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukr. matem. zhurn., 37:5 (1985), 581–589 | MR | Zbl
[11] V. V. Liiko, A. L. Skubachevskii, “Smeshannye zadachi dlya silno ellipticheskikh differentsialno-raznostnykh uravnenii v tsilindre”, Matem. zametki, 107:5 (2020), 693–716 | DOI | MR | Zbl
[12] A. L. Skubachevskii, N. O. Ivanov, “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, SMFN, 67, no. 3, Rossiiskii universitet druzhby narodov, M., 2021, 576–595 | DOI
[13] A. L. Skubachevskii, N. O. Ivanov, “Vtoraya kraevaya zadacha dlya differentsialno-raznostnykh uravnenii”, Dokl. AN, 500:1 (2021), 74–77 | DOI | Zbl