Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_6_a3, author = {M. Yu. Ignat'ev}, title = {On {Scattering} {Data} for {Differential} {Systems} with a {Singularity}}, journal = {Matemati\v{c}eskie zametki}, pages = {846--863}, publisher = {mathdoc}, volume = {111}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a3/} }
M. Yu. Ignat'ev. On Scattering Data for Differential Systems with a Singularity. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 846-863. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a3/
[1] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15:4 (1951), 309–360 | MR | Zbl
[2] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Kraevye zadachi matematicheskoi fiziki. 2, Tr. MIAN SSSR, 73, Nauka, M.–L., 1964, 314–336 | MR | Zbl
[3] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002 | MR | Zbl
[4] R. Beals, P. Deift, K. Tomei, Direct and Inverse Scattering on the Line, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[5] V. A. Yurko, “On higher-order differential operators with a singular point”, Inverse Problems, 9 (1993), 495–502 | DOI | MR | Zbl
[6] M. Ignatyev, “Spectral analysis for differential systems with a singularity”, Results Math., 71 (2017), 1531–1555 | DOI | MR | Zbl
[7] M. Yu. Ignatiev, “On Weyl-type solutions of differential systems with a singularity. The case of discontinuous potential”, Math. Notes, 108:6 (2020), 814–826 | DOI | MR | Zbl
[8] Y. Sibuya, “Stokes phenomena”, Bull. Amer. Math. Soc., 83 (1977), 1075–1077 | DOI | MR | Zbl
[9] M. V. Fedoryuk, “Izomonodromnye deformatsii uravnenii s irregulyarnymi osobennostyami”, Matem. sb., 181:12 (1990), 1623–1639 | MR | Zbl