$j$-Self-Adjointness Conditions for Jacobi Matrices and Schr\"odinger and Dirac Operators with Point Interactions
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 940-946.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Jacobi matrix
Keywords: defect numbers, Schrödinger and Dirac operators, point interactions, $j$-self-adjointness.
@article{MZM_2022_111_6_a12,
     author = {S. A. Aleroev and M. M. Malamud},
     title = {$j${-Self-Adjointness} {Conditions} for {Jacobi} {Matrices} and {Schr\"odinger} and {Dirac} {Operators} with {Point} {Interactions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {940--946},
     publisher = {mathdoc},
     volume = {111},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a12/}
}
TY  - JOUR
AU  - S. A. Aleroev
AU  - M. M. Malamud
TI  - $j$-Self-Adjointness Conditions for Jacobi Matrices and Schr\"odinger and Dirac Operators with Point Interactions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 940
EP  - 946
VL  - 111
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a12/
LA  - ru
ID  - MZM_2022_111_6_a12
ER  - 
%0 Journal Article
%A S. A. Aleroev
%A M. M. Malamud
%T $j$-Self-Adjointness Conditions for Jacobi Matrices and Schr\"odinger and Dirac Operators with Point Interactions
%J Matematičeskie zametki
%D 2022
%P 940-946
%V 111
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a12/
%G ru
%F MZM_2022_111_6_a12
S. A. Aleroev; M. M. Malamud. $j$-Self-Adjointness Conditions for Jacobi Matrices and Schr\"odinger and Dirac Operators with Point Interactions. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 940-946. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a12/

[1] V. B. Lidskii, Tr. MMO, 9, GIFML, M., 1960, 45–79 | MR | Zbl

[2] I. M. Glazman, Pryamye metody spektralnogo kachestvennogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963 | MR | Zbl

[3] J. Dereziński, V. Georgescu, Ann. Henri Poincaré, 21:6 (2020), 1947–2008 | DOI | MR | Zbl

[4] D. Lenz, C. Schubert, I. Veselic, Math. Nachr., 287 (2014), 962–979 | DOI | MR | Zbl

[5] S. Clark, F. Gesztesy, Recent Advances in Differential Equations and Mathematical Physics, Contemp. Math., 412, Amer. Math. Soc., Providence, RI, 2006, 103–140 | DOI | MR | Zbl

[6] B. M. Brown, M. Klaus, M. Malamud, V. Mogilevskii, I. Wood, J. Math. Anal. Appl., 480 (2019), Paper No. 123344 | DOI | MR

[7] M. Malamud, V. Mogilevskii, Methods Funct. Anal. Topology, 8:4 (2002), 72–100 | MR | Zbl

[8] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl

[9] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[10] A. G. Kostyuchenko, K. A. Mirzoev, Funkts. analiz i ego pril., 35:4 (2001), 32–37 | DOI | MR | Zbl

[11] A. S. Kostenko, M. M. Malamud, J. Differential Equations, 249 (2010), 253–304 | DOI | MR | Zbl

[12] R. Carlone, M. Malamud, A. Posilicano, J. Differential Equations, 254 (2013), 3835–3902 | DOI | MR | Zbl

[13] Yu. M. Dyukarev, Matem. sb., 201:12 (2010), 83–92 | DOI | MR | Zbl

[14] V. S. Budyka, M. M. Malamud, Matem. zametki, 106:6 (2019), 940–945 | DOI | MR | Zbl

[15] V. S. Budyka, M. M. Malamud, Matem. zametki, 110:6 (2021), 932–938 | DOI | MR | Zbl

[16] V. S. Budyka, M. M. Malamud, J. Math. Anal. Appl., 506 (2022), Paper No. 125582 | DOI | MR

[17] C. Shubin Christ, G. Stolz, J. Math. Anal. Appl., 184 (1994), 491–516 | DOI | MR | Zbl

[18] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl