On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 929-939.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three new theorems are proved in the paper, which give bounds for the number of edges in induced subgraphs of a special distance graph.
Keywords: distance graphs, Johnson graphs.
@article{MZM_2022_111_6_a11,
     author = {Ya. K. Shubin},
     title = {On the {Minimal} {Number} of {Edges} in {Induced} {Subgraphs} of {Special} {Distance} {Graphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {929--939},
     publisher = {mathdoc},
     volume = {111},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a11/}
}
TY  - JOUR
AU  - Ya. K. Shubin
TI  - On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs
JO  - Matematičeskie zametki
PY  - 2022
SP  - 929
EP  - 939
VL  - 111
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a11/
LA  - ru
ID  - MZM_2022_111_6_a11
ER  - 
%0 Journal Article
%A Ya. K. Shubin
%T On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs
%J Matematičeskie zametki
%D 2022
%P 929-939
%V 111
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a11/
%G ru
%F MZM_2022_111_6_a11
Ya. K. Shubin. On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 929-939. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a11/

[1] P. Frankl, R. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1:4 (1981), 357–368 | DOI | MR | Zbl

[2] A. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | MR

[3] A. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (337) (2001), 107–146 | DOI | MR | Zbl

[4] V. Boltyanski, H. Martini, P. Soltan, Excursions Into Combinatorial Geometry, Springer-Verlag, Berlin, 1997 | MR | Zbl

[5] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl

[6] A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “Ob odnom obobschenii knezerovskikh grafov”, Matem. zametki, 107:3 (2020), 351–365 | DOI | MR | Zbl

[7] A. V. Berdnikov, A. M. Raigorodskii, “Otsenki chisel Borsuka po distantsionnym grafam spetsialnogo vida”, Probl. peredachi inform., 57:2 (2021), 44–50 | DOI | Zbl

[8] P. A. Ogarok, A. M. Raigorodskii, “Ob ustoichivosti chisla nezavisimosti nekotorogo distantsionnogo grafa”, Probl. peredachi inform., 56:4 (2020), 50–63 | DOI | Zbl

[9] F. A. Pushnyakov, A. M. Raigorodskii, “Otsenka chisla reber v osobykh podgrafakh nekotorogo distantsionnogo grafa”, Matem. zametki, 107:2 (2020), 286–298 | DOI | MR | Zbl

[10] P. Frankl, Z. Füredi, “Forbidding just one intersection”, J. Combin. Theory Ser. A, 39:2 (1985), 160–176 | DOI | MR | Zbl

[11] F. A. Pushnyakov, “O chisle reber v indutsirovannykh podgrafakh spetsialnogo distantsionnogo grafa”, Matem. zametki, 99:4 (2016), 550–558 | DOI | MR | Zbl

[12] F. A. Pushnyakov, “Novaya otsenka chisla reber v indutsirovannykh podgrafakh spetsialnogo distantsionnogo grafa”, Probl. peredachi inform., 51:4 (2015), 71–77 | MR | Zbl

[13] F. A. Pushnyakov, O chisle reber v indutsirovannykh podgrafakh spetsialnykh distantsionnykh grafov, Dis. $\dots$ kand. fiz-matem. nauk, 2020 | Zbl

[14] F. A. Pushnyakov, “O kolichestvakh reber v porozhdennykh podgrafakh nekotorykh distantsionnykh grafov”, Matem. zametki, 105:4 (2019), 592–602 | DOI | MR | Zbl

[15] F. A. Pushnyakov, A. M. Raigorodskii, “Otsenka chisla reber v podgrafakh grafa Dzhonsona”, Dokl. AN, 499 (2021), 40–43 | DOI | Zbl

[16] L. E. Shabanov, A. M. Raigorodskii, “Turán type results for distance graphs”, Discrete Comput. Geom., 56:3 (2016), 814–832 | DOI | MR | Zbl

[17] L. E. Shabanov, “Turanovskie otsenki dlya distantsionnykh grafov v tonkoi sloike”, Kombinatorika i teoriya grafov. IX, Zap. nauchn. sem. POMI, 464, POMI, SPb., 2017, 132–168