On the Continuation of Solutions of Linear Equations with Analytic Coefficients
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 921-928
Voir la notice de l'article provenant de la source Math-Net.Ru
In the tangent space, the principal symbol of the considered class of linear differential equations with analytic coefficients determines a bundle such that, on each of its integral lines, the germ of a generalized solution at one of the points uniquely determines the germs of the solution at all other points. The cases of holonomic and nonholonomic induces distributions are considered.
Mots-clés :
unique continuation, solution germ.
@article{MZM_2022_111_6_a10,
author = {N. A. Shananin},
title = {On the {Continuation} of {Solutions} of {Linear} {Equations} with {Analytic} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {921--928},
publisher = {mathdoc},
volume = {111},
number = {6},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a10/}
}
N. A. Shananin. On the Continuation of Solutions of Linear Equations with Analytic Coefficients. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 921-928. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a10/