Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_6_a0, author = {R. M. Gadzhimirzaev}, title = {On {Approximation} {Properties} of {Fourier} {Series} in {Jacobi} {Polynomials} $P_n^{\alpha-r,-r}(x)$ {Orthogonal} in the {Sense} of {Sobolev}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--818}, publisher = {mathdoc}, volume = {111}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a0/} }
TY - JOUR AU - R. M. Gadzhimirzaev TI - On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev JO - Matematičeskie zametki PY - 2022 SP - 803 EP - 818 VL - 111 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a0/ LA - ru ID - MZM_2022_111_6_a0 ER -
%0 Journal Article %A R. M. Gadzhimirzaev %T On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev %J Matematičeskie zametki %D 2022 %P 803-818 %V 111 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a0/ %G ru %F MZM_2022_111_6_a0
R. M. Gadzhimirzaev. On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 803-818. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a0/