Optimal Recovery of Functions from Numerical Information on Them and Limiting Error of the Optimal Computing Unit
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 752-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article establishes the exact order of the optimal recovery error for functions in the anisotropic Sobolev class $W_2^{\mathbf r}$ for the case in which the values of linear functionals defined on the class $W_2^{\mathbf r}$ are used as numerical information about the function. The limiting error of the computing unit that realizes the exact order of recovery is found.
Keywords: numerical information, computing unit, limiting error
Mots-clés : anisotropic Sobolev class.
@article{MZM_2022_111_5_a8,
     author = {A. B. Utesov},
     title = {Optimal {Recovery} of {Functions} from {Numerical} {Information} on {Them} and {Limiting} {Error} of the {Optimal} {Computing} {Unit}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {752--761},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a8/}
}
TY  - JOUR
AU  - A. B. Utesov
TI  - Optimal Recovery of Functions from Numerical Information on Them and Limiting Error of the Optimal Computing Unit
JO  - Matematičeskie zametki
PY  - 2022
SP  - 752
EP  - 761
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a8/
LA  - ru
ID  - MZM_2022_111_5_a8
ER  - 
%0 Journal Article
%A A. B. Utesov
%T Optimal Recovery of Functions from Numerical Information on Them and Limiting Error of the Optimal Computing Unit
%J Matematičeskie zametki
%D 2022
%P 752-761
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a8/
%G ru
%F MZM_2022_111_5_a8
A. B. Utesov. Optimal Recovery of Functions from Numerical Information on Them and Limiting Error of the Optimal Computing Unit. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 752-761. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a8/

[1] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[2] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl

[3] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems. Vol. I. Linear Information, European Math. Soc., Zurich, 2008 | MR

[4] V. Temlyakov, Multivariate Approximation, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl

[5] S. D. Fisher, Ch. A. Michelli, “Optimal sampling of holomorphic functions”, Amer. J. Math., 106:3 (1984), 593–609 | DOI | MR | Zbl

[6] S. D. Fisher, Ch. A. Michelli, “Optimal sampling of holomorphic functions. II”, Amer. J. Math., 273:1 (1985), 131–147 | MR | Zbl

[7] Sh. Azhgaliev, N. Temirgaliev, “Ob informativnoi moschnosti lineinykh funktsionalov”, Matem. zametki, 73:6 (2003), 803–812 | DOI | MR | Zbl

[8] Sh. Azhgaliev, N. Temirgaliev, “Informativnaya moschnost vsekh lineinykh funktsionalov pri vosstanovlenii funktsii iz klassov $H_p^\omega$”, Matem. sb., 198:11 (2007), 3–20 | DOI | MR | Zbl

[9] N. Temirgaliev, “Kompyuternyi (vychislitelnyi) poperechnik. Algebraicheskaya teoriya chisel i garmonicheskii analiz v zadachakh vosstanovleniya (metod kvazi-Monte Karlo). Teoriya vlozhenii i priblizhenii. Ryady Fure”, Vestn. ENU im. L. N. Gumileva. Ser. Matem. Inform. Mekh., 2010, Spets. vypusk, 1–194

[10] A. Zh. Zhubanysheva, N. Temirgaliev, “Informativnaya moschnost trigonometricheskikh koeffitsientov Fure i ikh predelnaya pogreshnost pri diskretizatsii operatora differentsirovaniya na mnogomernykh klassakh Soboleva”, Zh. vychisl. matem. i matem. fiz., 55:9 (2015), 1474–1485 | DOI | MR | Zbl

[11] N. Temirgaliev, A. Zh. Zhubanysheva, “Poryadkovye otsenki norm proizvodnykh funktsii s nulevymi znacheniyami na lineinykh funktsionalakh i ikh primeneniya”, Izv. vuzov. Matem., 2017, no. 3, 89–95 | Zbl

[12] A. B. Utesov, A. T. Abdykulov, “Polnoe K(V)P-issledovanie zadachi vosstanovleniya funktsii iz anizotropnykh klassov Soboleva po netochnym znacheniyam ikh trigonometricheskikh koeffitsientov Fure”, Vestn. ENU im. L. N. Gumileva. Ser. Matem. Inform. Mekh., 122:1 (2018), 90–98

[13] A. B. Utesov, “Ob optimalnom vosstanovlenii funktsii iz klassa Korobova v ramkakh K(V)P-postanovki.”, Vestn. KazNPU im. Abaya. Ser. Fiz.-matem. nauki, 70:2 (2020), 115–121 | DOI

[14] Sh. Azhgaliev, “O diskretizatsii reshenii uravneniya teploprovodnosti”, Matem. zametki, 82:2 (2007), 177–182 | DOI | MR | Zbl

[15] S. M. Nikolskii, “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, Izd-vo AN SSSR, M., 1951, 244–278 | MR | Zbl

[16] V. N. Temlyakov, “O priblizhenii elementami konechnomernogo podprostranstva funktsii iz razlichnykh klassov Soboleva ili Nikolskogo”, Matem. zametki, 43:6 (1988), 770–785 | MR | Zbl

[17] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178, 1986, 3–113 | MR | Zbl