On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas with remainder for the number of representations of a pair of integers by quadratic and linear forms with a congruential condition are proved.
Keywords: Diophantine system with quadratic and linear forms, congruential condition, asymptotic formula.
Mots-clés : joint invariant
@article{MZM_2022_111_5_a5,
     author = {U. M. Pachev and L. A. Khalilova},
     title = {On an {Asymptotics} of the {Number} of {Representations} of a {Pair} of {Integers} by {Quadratic} and {Linear} {Form} with {Congruential} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {726--737},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/}
}
TY  - JOUR
AU  - U. M. Pachev
AU  - L. A. Khalilova
TI  - On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
JO  - Matematičeskie zametki
PY  - 2022
SP  - 726
EP  - 737
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/
LA  - ru
ID  - MZM_2022_111_5_a5
ER  - 
%0 Journal Article
%A U. M. Pachev
%A L. A. Khalilova
%T On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
%J Matematičeskie zametki
%D 2022
%P 726-737
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/
%G ru
%F MZM_2022_111_5_a5
U. M. Pachev; L. A. Khalilova. On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/

[1] G. Pall, “Simultaneous quadratic and linear representation”, Quart. J. Math., 2:1 (1931), 136–143 | DOI

[2] G. Pall, “Simultaneous representation in a quadratic and linear form”, Duke Math. J., 8 (1941), 173–180 | MR

[3] H. D. Kloosterman, “Simultane Darstellung zweier ganzen Zahlen als einer Summe von ganzen Zahlen und deren Quadratsumme”, Math. Ann., 118 (1942), 319–364 | MR

[4] N. G. de Bruijn, “Over het aantal oplossingen van het stelsel $x_1^2+x_2^2+x_3^2=n$, $x_1+x_2+x_3=m$”, Nieuw Arch. Wisk. (4), 2:22 (1943), 53–56 | MR

[5] P. Bronkhorst, Over het aantal oplossingen van het stelsel Diophantische ver gelijkingen $x_1^2+\dotsb+x_3^2=n$, $x_1+\dotsb+x_3=m$ voor $s=6$ en $s=8$, Thesis, Univ. Groningen, Groningen, 1943 | MR

[6] F. van der Beij, “Simultaneous representation of integers by a quadratic and a linear form”, Nieuw Arch. Wisk. (3), 7:3 (1959), 109–114 | MR | Zbl

[7] G. A. Lomadze, “Ob odnovremennom predstavlenii dvukh tselykh chisel summami tselykh chisel i ikh kvadratov”, Tr. Tbilisskogo matem. in-ta im. A. M. Razmadze, 18 (1950), 153–180

[8] A. B. Voronetskii, A. V. Malyshev, “Ob odnovremennom predstavlenii pary chisel summami tselykh chisel i ikh kvadratov”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 142, 1976, 122–134 | MR | Zbl

[9] A. Z. Valfish, “Additivnaya teoriya chisel”, Tr. Tbilisskogo matem. in-ta im. A. M. Razmadze, 19 (1953), 33–59 | MR

[10] A. Z. Valfish, “O predstavlenii chisel summami kvadratov. Asimptoticheskie formuly”, UMN, 7:6 (52) (1952), 97–178 | MR | Zbl

[11] A. A. Walfitz, “Über die simaltane Darstellung quadratische und lineare Formen”, Acta Arith., 35 (1979), 289–301 | DOI | MR

[12] I. M. Vinogradov, “Ob odnom klasse sovokupnykh diofantovykh uravnenii”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie fiziko-matematicheskikh nauk, 1929, no. 4, 355–376 | Zbl

[13] I. M. Vinogradov, Izbrannye trudy, Izv. AN SSSR, M., 1952 | MR

[14] K. K. Mardzhanishvili, “Ob odnovremennom predstavlenii $n$ chisel summami polnykh pervykh, vtorykh, ..., $n$-ykh stepenei”, Izv. AN SSSR. Ser. matem., 1:4 (1937), 609–631 | Zbl

[15] P. Lankaster, Teoriya matrits, Nauka, M., 1982 | MR

[16] M. Newman, Integral Matrices, Academic Press, New York, 1972 | MR | Zbl

[17] Yu. I. Manin, A. A. Panchishkin, Teoriya chisel – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 49, VINITI, M., 1990 | MR | Zbl

[18] A. V. Malyshev, O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Tr. MIAN SSSR, 65, Izd-vo AN SSSR, M., 1962 | MR | Zbl

[19] A. V. Malyshev, O formulakh dlya kolichestva predstavlenii chisel polozhitelnymi kvadratichnymi formami, Nauka i tekhnika, Minsk, 1974

[20] A. V. Malyshev, “O vzveshennom kolichestve tselykh tochek, lezhaschikh na poverkhnosti vtorogo poryadka”, Issledovaniya po teorii chisel, Zap. nauchn. sem. LOMI, 1, M., 1966, 6–83 | MR | Zbl

[21] U. M. Pachev, R. A. Dokhov, “Ob osobykh funktsiyakh v zadache o vzveshennom chisle tselykh tochek na mnogomernykh giperboloidakh spetsialnogo vida”, Matem. zametki, 105:2 (2019), 278–293 | DOI | MR | Zbl