On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic formulas with remainder for the number of representations of a pair of integers by quadratic and linear forms with a congruential condition are proved.
Keywords:
Diophantine system with quadratic and linear forms, congruential condition, asymptotic formula.
Mots-clés : joint invariant
Mots-clés : joint invariant
@article{MZM_2022_111_5_a5,
author = {U. M. Pachev and L. A. Khalilova},
title = {On an {Asymptotics} of the {Number} of {Representations} of a {Pair} of {Integers} by {Quadratic} and {Linear} {Form} with {Congruential} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {726--737},
publisher = {mathdoc},
volume = {111},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/}
}
TY - JOUR AU - U. M. Pachev AU - L. A. Khalilova TI - On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition JO - Matematičeskie zametki PY - 2022 SP - 726 EP - 737 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/ LA - ru ID - MZM_2022_111_5_a5 ER -
%0 Journal Article %A U. M. Pachev %A L. A. Khalilova %T On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition %J Matematičeskie zametki %D 2022 %P 726-737 %V 111 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/ %G ru %F MZM_2022_111_5_a5
U. M. Pachev; L. A. Khalilova. On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/