Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a5, author = {U. M. Pachev and L. A. Khalilova}, title = {On an {Asymptotics} of the {Number} of {Representations} of a {Pair} of {Integers} by {Quadratic} and {Linear} {Form} with {Congruential} {Condition}}, journal = {Matemati\v{c}eskie zametki}, pages = {726--737}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/} }
TY - JOUR AU - U. M. Pachev AU - L. A. Khalilova TI - On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition JO - Matematičeskie zametki PY - 2022 SP - 726 EP - 737 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/ LA - ru ID - MZM_2022_111_5_a5 ER -
%0 Journal Article %A U. M. Pachev %A L. A. Khalilova %T On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition %J Matematičeskie zametki %D 2022 %P 726-737 %V 111 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/ %G ru %F MZM_2022_111_5_a5
U. M. Pachev; L. A. Khalilova. On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/
[1] G. Pall, “Simultaneous quadratic and linear representation”, Quart. J. Math., 2:1 (1931), 136–143 | DOI
[2] G. Pall, “Simultaneous representation in a quadratic and linear form”, Duke Math. J., 8 (1941), 173–180 | MR
[3] H. D. Kloosterman, “Simultane Darstellung zweier ganzen Zahlen als einer Summe von ganzen Zahlen und deren Quadratsumme”, Math. Ann., 118 (1942), 319–364 | MR
[4] N. G. de Bruijn, “Over het aantal oplossingen van het stelsel $x_1^2+x_2^2+x_3^2=n$, $x_1+x_2+x_3=m$”, Nieuw Arch. Wisk. (4), 2:22 (1943), 53–56 | MR
[5] P. Bronkhorst, Over het aantal oplossingen van het stelsel Diophantische ver gelijkingen $x_1^2+\dotsb+x_3^2=n$, $x_1+\dotsb+x_3=m$ voor $s=6$ en $s=8$, Thesis, Univ. Groningen, Groningen, 1943 | MR
[6] F. van der Beij, “Simultaneous representation of integers by a quadratic and a linear form”, Nieuw Arch. Wisk. (3), 7:3 (1959), 109–114 | MR | Zbl
[7] G. A. Lomadze, “Ob odnovremennom predstavlenii dvukh tselykh chisel summami tselykh chisel i ikh kvadratov”, Tr. Tbilisskogo matem. in-ta im. A. M. Razmadze, 18 (1950), 153–180
[8] A. B. Voronetskii, A. V. Malyshev, “Ob odnovremennom predstavlenii pary chisel summami tselykh chisel i ikh kvadratov”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 142, 1976, 122–134 | MR | Zbl
[9] A. Z. Valfish, “Additivnaya teoriya chisel”, Tr. Tbilisskogo matem. in-ta im. A. M. Razmadze, 19 (1953), 33–59 | MR
[10] A. Z. Valfish, “O predstavlenii chisel summami kvadratov. Asimptoticheskie formuly”, UMN, 7:6 (52) (1952), 97–178 | MR | Zbl
[11] A. A. Walfitz, “Über die simaltane Darstellung quadratische und lineare Formen”, Acta Arith., 35 (1979), 289–301 | DOI | MR
[12] I. M. Vinogradov, “Ob odnom klasse sovokupnykh diofantovykh uravnenii”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie fiziko-matematicheskikh nauk, 1929, no. 4, 355–376 | Zbl
[13] I. M. Vinogradov, Izbrannye trudy, Izv. AN SSSR, M., 1952 | MR
[14] K. K. Mardzhanishvili, “Ob odnovremennom predstavlenii $n$ chisel summami polnykh pervykh, vtorykh, ..., $n$-ykh stepenei”, Izv. AN SSSR. Ser. matem., 1:4 (1937), 609–631 | Zbl
[15] P. Lankaster, Teoriya matrits, Nauka, M., 1982 | MR
[16] M. Newman, Integral Matrices, Academic Press, New York, 1972 | MR | Zbl
[17] Yu. I. Manin, A. A. Panchishkin, Teoriya chisel – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 49, VINITI, M., 1990 | MR | Zbl
[18] A. V. Malyshev, O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Tr. MIAN SSSR, 65, Izd-vo AN SSSR, M., 1962 | MR | Zbl
[19] A. V. Malyshev, O formulakh dlya kolichestva predstavlenii chisel polozhitelnymi kvadratichnymi formami, Nauka i tekhnika, Minsk, 1974
[20] A. V. Malyshev, “O vzveshennom kolichestve tselykh tochek, lezhaschikh na poverkhnosti vtorogo poryadka”, Issledovaniya po teorii chisel, Zap. nauchn. sem. LOMI, 1, M., 1966, 6–83 | MR | Zbl
[21] U. M. Pachev, R. A. Dokhov, “Ob osobykh funktsiyakh v zadache o vzveshennom chisle tselykh tochek na mnogomernykh giperboloidakh spetsialnogo vida”, Matem. zametki, 105:2 (2019), 278–293 | DOI | MR | Zbl