On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas with remainder for the number of representations of a pair of integers by quadratic and linear forms with a congruential condition are proved.
Keywords: Diophantine system with quadratic and linear forms, congruential condition, asymptotic formula.
Mots-clés : joint invariant
@article{MZM_2022_111_5_a5,
     author = {U. M. Pachev and L. A. Khalilova},
     title = {On an {Asymptotics} of the {Number} of {Representations} of a {Pair} of {Integers} by {Quadratic} and {Linear} {Form} with {Congruential} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {726--737},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/}
}
TY  - JOUR
AU  - U. M. Pachev
AU  - L. A. Khalilova
TI  - On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
JO  - Matematičeskie zametki
PY  - 2022
SP  - 726
EP  - 737
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/
LA  - ru
ID  - MZM_2022_111_5_a5
ER  - 
%0 Journal Article
%A U. M. Pachev
%A L. A. Khalilova
%T On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition
%J Matematičeskie zametki
%D 2022
%P 726-737
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/
%G ru
%F MZM_2022_111_5_a5
U. M. Pachev; L. A. Khalilova. On an Asymptotics of the Number of Representations of a Pair of Integers by Quadratic and Linear Form with Congruential Condition. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 726-737. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a5/