Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a11, author = {V. O. Golubenets and I. S. Kashchenko}, title = {Local {Dynamics} of a {Singularly} {Perturbed} {Second} {Order} {Equation} with {State-Dependent} {Delay}}, journal = {Matemati\v{c}eskie zametki}, pages = {795--799}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a11/} }
TY - JOUR AU - V. O. Golubenets AU - I. S. Kashchenko TI - Local Dynamics of a Singularly Perturbed Second Order Equation with State-Dependent Delay JO - Matematičeskie zametki PY - 2022 SP - 795 EP - 799 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a11/ LA - ru ID - MZM_2022_111_5_a11 ER -
%0 Journal Article %A V. O. Golubenets %A I. S. Kashchenko %T Local Dynamics of a Singularly Perturbed Second Order Equation with State-Dependent Delay %J Matematičeskie zametki %D 2022 %P 795-799 %V 111 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a11/ %G ru %F MZM_2022_111_5_a11
V. O. Golubenets; I. S. Kashchenko. Local Dynamics of a Singularly Perturbed Second Order Equation with State-Dependent Delay. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 795-799. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a11/
[1] T. Erneux, Applied Delay Differential Equations, Springer, Berlin, 2009 | MR | Zbl
[2] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Springer, Berlin, 2013 | MR
[3] T. Insperger, D. Barton, G. Stepan, Int. J. Non-Linear Mech., 43:2 (2008), 140–149 | DOI | Zbl
[4] D. Bachrathy, G. Stepan, J. Turi, J. Comput. Nonlinear Dynam., 6:4 (2011), 041002 | DOI
[5] S. A. Kaschenko, Differents. uravneniya, 25:2 (1989), 262–270 | MR | Zbl
[6] S. A. Kaschenko, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR | Zbl
[7] I. S. Kaschenko, S. A. Kaschenko, Dokl. AN, 464:5 (2015), 521–524 | MR | Zbl
[8] I. Kashchenko, S. Kaschenko, Nonlinear Phenom. Complex Syst., 22:4 (2019), 407–412 | DOI | Zbl