On the Representation of Sobolev Systems Orthogonal with Respect to the Inner Product with One Discrete Point
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 561-570
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain the representation of systems of functions $\Phi_1$ orthogonal with respect to the Sobolev-type inner product with one discrete point in terms of functions of systems orthogonal in $L^2$. Questions relating to the completeness of the system $\Phi_1$ are investigated. Some properties of systems of functions obtained by differentiating the system $\Phi_1$ are studied.
Keywords:
Sobolev orthogonality, completeness of orthogonal systems, representation of Sobolev systems, differentiation of Sobolev systems.
@article{MZM_2022_111_4_a7,
author = {M. G. Magomed-Kasumov and T. N. Shakh-Emirov},
title = {On the {Representation} of {Sobolev} {Systems} {Orthogonal} with {Respect} to the {Inner} {Product} with {One} {Discrete} {Point}},
journal = {Matemati\v{c}eskie zametki},
pages = {561--570},
year = {2022},
volume = {111},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a7/}
}
TY - JOUR AU - M. G. Magomed-Kasumov AU - T. N. Shakh-Emirov TI - On the Representation of Sobolev Systems Orthogonal with Respect to the Inner Product with One Discrete Point JO - Matematičeskie zametki PY - 2022 SP - 561 EP - 570 VL - 111 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a7/ LA - ru ID - MZM_2022_111_4_a7 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %A T. N. Shakh-Emirov %T On the Representation of Sobolev Systems Orthogonal with Respect to the Inner Product with One Discrete Point %J Matematičeskie zametki %D 2022 %P 561-570 %V 111 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a7/ %G ru %F MZM_2022_111_4_a7
M. G. Magomed-Kasumov; T. N. Shakh-Emirov. On the Representation of Sobolev Systems Orthogonal with Respect to the Inner Product with One Discrete Point. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 561-570. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a7/
[1] F. Marcellán, Y. Xu, “On Sobolev orthogonal polynomials”, Expo Math, 33:3 (2015), 308–352 | DOI | MR | Zbl
[2] I. I. Sharapudinov, “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | DOI | MR | Zbl
[3] I. I. Sharapudinov, “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4 (448) (2019), 87–164 | DOI | MR | Zbl