On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 638-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: symplectic variety, Lagrangian subvariety, toric action.
@article{MZM_2022_111_4_a17,
     author = {N. A. Tyurin},
     title = {On the {Lagrangian} {Geometry} of the {Tangent} {Bundle} of a {Toric} {Variety}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {638--640},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a17/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety
JO  - Matematičeskie zametki
PY  - 2022
SP  - 638
EP  - 640
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a17/
LA  - ru
ID  - MZM_2022_111_4_a17
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety
%J Matematičeskie zametki
%D 2022
%P 638-640
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a17/
%G ru
%F MZM_2022_111_4_a17
N. A. Tyurin. On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 638-640. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a17/

[1] N. Tyurin, Matem. sb., 212:3 (2021), 128–138 | DOI | MR | Zbl

[2] N. Tyurin, Sib. matem. zhurn., 62:2 (2021), 457–465 | DOI | Zbl

[3] M. Audin, Torus Action on Symplectic Manifolds, Progr. Math., 93, Birkhäuser Verlag, Basel, 2004 | MR

[4] A. Mironov, Matem. sb., 195:1 (2004), 89–102 | DOI | MR | Zbl

[5] P. E. Pushkar, Funkts. analiz i ego pril., 34:4 (2000), 64–70 | DOI | MR | Zbl