Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_4_a15, author = {M. A. Skopina and Yu. A. Farkov}, title = {Walsh-Type {Functions} on $M${-Positive} {Sets} in $\mathbb R^d$}, journal = {Matemati\v{c}eskie zametki}, pages = {631--635}, publisher = {mathdoc}, volume = {111}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a15/} }
M. A. Skopina; Yu. A. Farkov. Walsh-Type Functions on $M$-Positive Sets in $\mathbb R^d$. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 631-635. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a15/
[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, LKI, M., 2008
[2] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990 | MR | Zbl
[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR
[4] M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47 (2019), 795–821 | DOI | MR | Zbl
[5] T. I. Zaitseva, Matem. sb., 211:9 (2020), 24–59 | DOI | MR | Zbl
[6] I. E. Maksimenko, E. L. Rabkin, Issledovaniya po lineinym operatoram i teorii funktsii. 36, Zap. nauchn. sem. POMI, 355, POMI, SPb., 2008, 199–218
[7] Yu. A. Farkov, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | DOI | MR | Zbl
[8] Yu. A. Farkov, M. G. Robakidze, Matem. zametki, 106:3 (2019), 457–469 | DOI | MR | Zbl