Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 620-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: the Hölder exponent, $\epsilon$-complexity of continuous functions.
@article{MZM_2022_111_4_a13,
     author = {B. S. Darkhovsky},
     title = {Estimate of the {H\"older} {Exponent} {Based} on the $\epsilon${-Complexity} of {Continuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {620--623},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/}
}
TY  - JOUR
AU  - B. S. Darkhovsky
TI  - Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 620
EP  - 623
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/
LA  - ru
ID  - MZM_2022_111_4_a13
ER  - 
%0 Journal Article
%A B. S. Darkhovsky
%T Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions
%J Matematičeskie zametki
%D 2022
%P 620-623
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/
%G ru
%F MZM_2022_111_4_a13
B. S. Darkhovsky. Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 620-623. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/

[1] K. J. Falkoner, Fractal Geometry: Mathematical Foundations and Applications, New York, Wiley, 2003 | MR

[2] A. N. Pavlov, V. S. Anischenko, UFN, 177:8 (2007), 859–876 | DOI

[3] M. Sh. Shabozov, Matem. zametki, 110:3 (2021), 450–458 | DOI | Zbl

[4] A. Kh. Askarova, V. E. Ismailov, Matem. zametki, 109:6 (2021), 832–841 | DOI

[5] A. N. Kolmogorov, UMN, 38:4 (1983), 27–36 | MR | Zbl

[6] A. N. Kolmogorov, “Razlichnye podkhody k otsenke trudnosti priblizhennogo zadaniya i vychisleniya funktsii”, Proceedings of the International Congress of Mathematicians, Institute Mittag-Leffler, Djursholm, 1963, 352–356

[7] A. N. Kolmogorov, V. M. Tikhomirov, UMN, 14:2 (1959), 3–86 | MR | Zbl

[8] B. S. Darkhovskii, Teoriya veroyatn. i ee primen., 65:3 (2020), 479–497 | DOI | Zbl