Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 620-623
Voir la notice de l'article provenant de la source Math-Net.Ru
Keywords:
the Hölder exponent, $\epsilon$-complexity of continuous functions.
@article{MZM_2022_111_4_a13,
author = {B. S. Darkhovsky},
title = {Estimate of the {H\"older} {Exponent} {Based} on the $\epsilon${-Complexity} of {Continuous} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {620--623},
publisher = {mathdoc},
volume = {111},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/}
}
TY - JOUR AU - B. S. Darkhovsky TI - Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions JO - Matematičeskie zametki PY - 2022 SP - 620 EP - 623 VL - 111 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/ LA - ru ID - MZM_2022_111_4_a13 ER -
B. S. Darkhovsky. Estimate of the H\"older Exponent Based on the $\epsilon$-Complexity of Continuous Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 620-623. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/