Keywords: $\epsilon$-complexity of continuous functions.
@article{MZM_2022_111_4_a13,
author = {B. S. Darkhovsky},
title = {Estimate of the {H\"older} {Exponent} {Based} on the $\epsilon${-Complexity} of {Continuous} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {620--623},
year = {2022},
volume = {111},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/}
}
B. S. Darkhovsky. Estimate of the Hölder Exponent Based on the $\epsilon$-Complexity of Continuous Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 620-623. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a13/
[1] K. J. Falkoner, Fractal Geometry: Mathematical Foundations and Applications, New York, Wiley, 2003 | MR
[2] A. N. Pavlov, V. S. Anischenko, UFN, 177:8 (2007), 859–876 | DOI
[3] M. Sh. Shabozov, Matem. zametki, 110:3 (2021), 450–458 | DOI | Zbl
[4] A. Kh. Askarova, V. E. Ismailov, Matem. zametki, 109:6 (2021), 832–841 | DOI
[5] A. N. Kolmogorov, UMN, 38:4 (1983), 27–36 | MR | Zbl
[6] A. N. Kolmogorov, “Razlichnye podkhody k otsenke trudnosti priblizhennogo zadaniya i vychisleniya funktsii”, Proceedings of the International Congress of Mathematicians, Institute Mittag-Leffler, Djursholm, 1963, 352–356
[7] A. N. Kolmogorov, V. M. Tikhomirov, UMN, 14:2 (1959), 3–86 | MR | Zbl
[8] B. S. Darkhovskii, Teoriya veroyatn. i ee primen., 65:3 (2020), 479–497 | DOI | Zbl