Continuity of a Metric Function and Projection in Asymmetric Spaces
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 606-615.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies the continuity of left metric functions and the upper semicontinuity of left metric projections onto boundedly sequential left-compact sets in asymmetric spaces. Relationships between the properties of approximative stability and approximative compactness are studied.
Keywords: asymmetric spaces, convex sets, metric function, metric projection.
@article{MZM_2022_111_4_a11,
     author = {I. G. Tsar'kov},
     title = {Continuity of a {Metric} {Function} and {Projection} in {Asymmetric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {606--615},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a11/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuity of a Metric Function and Projection in Asymmetric Spaces
JO  - Matematičeskie zametki
PY  - 2022
SP  - 606
EP  - 615
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a11/
LA  - ru
ID  - MZM_2022_111_4_a11
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuity of a Metric Function and Projection in Asymmetric Spaces
%J Matematičeskie zametki
%D 2022
%P 606-615
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a11/
%G ru
%F MZM_2022_111_4_a11
I. G. Tsar'kov. Continuity of a Metric Function and Projection in Asymmetric Spaces. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 606-615. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a11/

[1] L. M. García Raffi, S. Romaguera, E. A. Sánchez Pérez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math., 29 (2003), 717–728 | MR | Zbl

[2] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Basel, 2013 | DOI | MR | Zbl

[3] S. Cobzas, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR | Zbl

[4] A. R. Alimov, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnym rasstoyaniem”, UMN, 58:2 (350) (2003), 159–160 | DOI | MR | Zbl

[5] A. R. Alimov, “O strukture dopolneniya k chebyshevskim mnozhestvam”, Funkts. analiz i ego pril., 35:3 (2001), 19–27 | DOI | MR | Zbl

[6] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4 (2) (2014), 489–497 | DOI | Zbl

[7] I. G. Tsarkov, “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Matem. sb., 211:8 (2020), 132–157 | DOI | MR | Zbl

[8] I. G. Tsarkov, “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Matem. sb., 210:9 (2019), 129–152 | DOI | MR | Zbl

[9] I. G. Tsarkov, “Nepreryvnye vyborki iz operatorov metricheskoi proektsii i ikh obobschenii”, Izv. RAN. Ser. matem., 82:4 (2018), 199–224 | DOI | MR | Zbl

[10] I. G. Tsarkov, “Nepreryvnye vyborki v nesimmetrichnykh prostranstvakh”, Matem. sb., 209:4 (2018), 95–116 | DOI | MR | Zbl

[11] I. G. Tsarkov, “Ravnomernaya vypuklost v nesimmetrichnykh prostranstvakh”, Matem. zametki, 110:5 (2021), 773–785 | DOI | Zbl

[12] M. Bachirc, G. Flores, “Index of symmetry and topological classification of asymmetric normed spaces”, Rocky Mountain J. Math., 50:6 (2020), 1951–1964 | MR

[13] V. Donjuán, N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl

[14] A. R. Alimov, I. G. Tsarkov, “Approksimativno kompaktnye mnozhestva v nesimmetrichno normirovannykh prostranstvakh Efimova–Stechkina i vypuklost pochti solnts”, Matem. zametki, 110:6 (2021), 916–921 | DOI | MR | Zbl

[15] A. R. Alimov, I. G. Tsar'kov, “Smoothness of subspace sections of the unit balls of $C (Q)$ and $L^1$”, J. Approx. Theory, 265 (2021), 105552 | DOI | Zbl