Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 483-493
Voir la notice de l'article provenant de la source Math-Net.Ru
In a two-dimensional Banach space $X$, the class of Chebyshev sets coincides with the class of closed and monotone path-connected sets if and only if $X$ is strictly convex. In a finite-dimensional Banach space $X$ of dimension at least $3$, this coincidence occurs if and only if $X$ is smooth and strictly convex.
Keywords:
Chebyshev set, convexity, monotone path-connectedness, smoothness.
@article{MZM_2022_111_4_a0,
author = {B. B. Bednov},
title = {Finite-Dimensional {Spaces} where the {Class} of {Chebyshev} {Sets} {Coincides} with the {Class} of {Closed} and {Monotone} {Path-Connected} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--493},
publisher = {mathdoc},
volume = {111},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/}
}
TY - JOUR AU - B. B. Bednov TI - Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets JO - Matematičeskie zametki PY - 2022 SP - 483 EP - 493 VL - 111 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/ LA - ru ID - MZM_2022_111_4_a0 ER -
%0 Journal Article %A B. B. Bednov %T Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets %J Matematičeskie zametki %D 2022 %P 483-493 %V 111 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/ %G ru %F MZM_2022_111_4_a0
B. B. Bednov. Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/