Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 483-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a two-dimensional Banach space $X$, the class of Chebyshev sets coincides with the class of closed and monotone path-connected sets if and only if $X$ is strictly convex. In a finite-dimensional Banach space $X$ of dimension at least $3$, this coincidence occurs if and only if $X$ is smooth and strictly convex.
Keywords: Chebyshev set, convexity, monotone path-connectedness, smoothness.
@article{MZM_2022_111_4_a0,
     author = {B. B. Bednov},
     title = {Finite-Dimensional {Spaces} where the {Class} of {Chebyshev} {Sets} {Coincides} with the {Class} of {Closed} and {Monotone} {Path-Connected} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--493},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets
JO  - Matematičeskie zametki
PY  - 2022
SP  - 483
EP  - 493
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/
LA  - ru
ID  - MZM_2022_111_4_a0
ER  - 
%0 Journal Article
%A B. B. Bednov
%T Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets
%J Matematičeskie zametki
%D 2022
%P 483-493
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/
%G ru
%F MZM_2022_111_4_a0
B. B. Bednov. Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a0/

[1] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | MR | Zbl

[2] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[3] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6(312) (1996), 125–188 | DOI | MR | Zbl

[4] A. R. Alimov, “Vsyakoe li chebyshevskoe mnozhestvo vypuklo?”, Matem. prosv., ser. 3, 2, MTsNMO, M., 1998, 155–172

[5] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | MR | Zbl

[6] H. Busemann, “Note on a theorem on convex sets”, Mat. Tidsskr. B, 1947, 32–34 | MR | Zbl

[7] G. Buzeman, Geometriya geodezicheskikh, Fizmatgiz, M., 1962

[8] D. E. Wulbert, “Structure of Tchebychev sets”, General Topology and its Relations to Modern Analysis and Algebra, II, Proc. Second Prague Top. Symp., 1966, 356–358

[9] A. R. Alimov, E. V. Shchepin, “Convexity of suns in tangent directions”, J. Convex Anal., 26 (2019), 1071–1076 | MR | Zbl

[10] A. R. Alimov, E. V. Schepin, “Vypuklost chebyshevskikh mnozhestv po kasatelnym napravleniyam”, UMN, 73:2 (2018), 185–186 | DOI | MR | Zbl

[11] A. R. Alimov, “Monotonnaya lineinaya svyaznost chebyshevskikh mnozhestv v prostranstve $C(Q)$”, Matem. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl

[12] A. R. Alimov, B. B. Bednov, “Monotonnaya lineinaya svyaznost chebyshevskikh mnozhestv v trekhmernykh prostranstvakh”, Matem. sb., 212:5 (2021), 37–57 | DOI | MR | Zbl

[13] I. G. Tsarkov, “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Matem. sb., 210:9 (2019), 129–152 | DOI | MR | Zbl

[14] P. A. Borodin, “Vypuklost $2$-chebyshevskikh mnozhestv v gilbertovom prostranstve”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 3, 16–19 | MR | Zbl

[15] P. A. Borodin, “O vypuklosti $N$-chebyshevskikh mnozhestv”, Izv. RAN. Ser. matem., 75:5 (2011), 19–46 | DOI | MR | Zbl

[16] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (2016), 3–84 | DOI | MR | Zbl

[17] I. G. Tsarkov, “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Matem. sb., 211:8 (2020), 132–157 | DOI | MR | Zbl

[18] L. Hetzelt, “On suns and cosuns in finite dimensional normed real vector spaces”, Acta Math. Hungar., 45:1-2 (1985), 53–68 | DOI | MR | Zbl