On the Marcinkiewicz--Calder\'on Interpolation Theorem for Integral Operators
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 422-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem to the classical Marcinkiewicz–Calderón interpolation theorem is considered. Necessary conditions for the Marcinkiewicz–Calderón theorem to hold for the integral operator under consideration are obtained in terms of the kernel of this operator. It is shown that these conditions are sufficient for the given integral operator to be of $(p,q)$-strong type for the same parameters $p$ and $q$ that appear in the interpolation theorem.
Keywords: integral operators, Marcinkiewicz interpolation theorem.
@article{MZM_2022_111_3_a8,
     author = {E. D. Nursultanov and N. T. Tleukhanova and Z. M. Mukeyeva},
     title = {On the {Marcinkiewicz--Calder\'on} {Interpolation} {Theorem} for {Integral} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {422--432},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a8/}
}
TY  - JOUR
AU  - E. D. Nursultanov
AU  - N. T. Tleukhanova
AU  - Z. M. Mukeyeva
TI  - On the Marcinkiewicz--Calder\'on Interpolation Theorem for Integral Operators
JO  - Matematičeskie zametki
PY  - 2022
SP  - 422
EP  - 432
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a8/
LA  - ru
ID  - MZM_2022_111_3_a8
ER  - 
%0 Journal Article
%A E. D. Nursultanov
%A N. T. Tleukhanova
%A Z. M. Mukeyeva
%T On the Marcinkiewicz--Calder\'on Interpolation Theorem for Integral Operators
%J Matematičeskie zametki
%D 2022
%P 422-432
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a8/
%G ru
%F MZM_2022_111_3_a8
E. D. Nursultanov; N. T. Tleukhanova; Z. M. Mukeyeva. On the Marcinkiewicz--Calder\'on Interpolation Theorem for Integral Operators. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 422-432. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a8/

[1] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl

[2] A. G. Kostyuchenko, E. D. Nursultanov, “Ob integralnykh operatorakh v $L_p$-prostranstvakh”, Fundament. i prikl. matem., 5:2 (1999), 475–491 | MR | Zbl

[3] E. D. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl

[4] S. Yano, “An extrapolation theorem”, J. Math. Soc. Japan, 3 (1951), 296–305 | MR | Zbl

[5] M. Milman, Extrapolation and Optimal Decompositions: With Applications to Analysis, Lecture Notes in Math., 1580, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[6] S. V. Astashkin, “Novye ekstrapolyatsionnye sootnosheniya v shkale $L_p$-prostranstv”, Funkts. analiz i ego pril., 37:3 (2003), 73–77 | DOI | MR | Zbl

[7] S. V. Astashkin, K. V. Lykov, “Ekstrapolyatsionnoe opisanie prostranstv Lorentsa i Martsinkevicha, “blizkikh” k $L_\infty$”, Sib. matem. zhurn., 47:5 (2006), 974–992 | MR | Zbl

[8] E. I. Berezhnoi, A. A. Perfilev, “Tochnaya teorema ekstrapolyatsii dlya operatorov”, Funkts. analiz i ego pril., 34:3 (2000), 66–68 | DOI | MR | Zbl