On Automorphisms of Direct Products of CR Manifolds
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 287-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion is given for the Lie algebra of infinitesimal holomorphic automorphisms of the direct product of two germs of real analytic generic CR manifolds to be equal to the direct sum of the algebras of the factors. In particular, this equality holds if the algebra of the direct product is finite-dimensional (for example, in the case of the product of holomorphically nondegenerate germs of finite Bloom–Graham type). The notion of the sum of Bloom–Graham types is introduced. It is shown that the type of a direct product is equal to the sum of the types of factors.
Keywords: CR manifold, Bloom–Graham type.
Mots-clés : automorphism
@article{MZM_2022_111_2_a9,
     author = {M. A. Stepanova},
     title = {On {Automorphisms} of {Direct} {Products} of {CR} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {287--296},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a9/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - On Automorphisms of Direct Products of CR Manifolds
JO  - Matematičeskie zametki
PY  - 2022
SP  - 287
EP  - 296
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a9/
LA  - ru
ID  - MZM_2022_111_2_a9
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T On Automorphisms of Direct Products of CR Manifolds
%J Matematičeskie zametki
%D 2022
%P 287-296
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a9/
%G ru
%F MZM_2022_111_2_a9
M. A. Stepanova. On Automorphisms of Direct Products of CR Manifolds. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 287-296. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a9/

[1] A. Bejancu, Geometry of CR-submanifolds, Math. Appl. (East European Ser.), 23, D. Reidel Publ., Dordrecht, 1986 | MR | Zbl

[2] A. Bejancu, M. Kon, K. Yano, “CR-submanifolds of a complex space form”, J. Differential Geometry, 16:1 (1981), 137–145 | DOI | MR | Zbl

[3] B. Y. Chen, “CR-submanifolds of a Kähler manifold. I”, J. Differential Geometry, 16:2 (1981), 305–322 | DOI | MR | Zbl

[4] M. A. Stepanova, “O $\mathrm{CR}$-mnogoobraziyakh beskonechnogo tipa po Blumu–Gremu”, Tr. MMO, 82, no. 2, 2021, 349–368

[5] Th. Bloom, J. Graham, “On “type” conditions for generic real submanifolds of $C^n$”, Invent. Math., 40:3 (1977), 217–243 | DOI | MR

[6] M. Baouendi, P. Ebenfelt, L. Rothschild, Real Submanifolds in Complex Space and Their Mappings, Princeton Univ. Press, Princeton, NJ, 1998 | MR

[7] V. K. Beloshapka, “CR-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174 | DOI | MR | Zbl