On Products of $\mathrm{F}^*(G)$-Subnormal Subgroups of Finite Groups
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 277-286

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a finite group $G$ is said to be $\mathrm{F}^*(G)$-subnormal if it is subnormal in $H\mathrm{F}^*(G)$, where $\mathrm{F}^*(G)$ is the generalized Fitting subgroup of $G$. In the paper, the structure of groups factorizable by two $\mathrm{F}^*(G)$-subnormal subgroups, one of which is nilpotent, is studied. In particular, if the other factor is metanilpotent, then the group is solvable. Moreover, if the commutator subgroup of the second factor is nilpotent, then the nilpotent length of the group is at most 3. The supersolvability of the product $G=AB=AC=BC$ of a nilpotent subgroup $A$ by supersolvable subgroups $B$ and $C$ (all three are $\mathrm{F}^*(G)$-subnormal) is established.
Keywords: finite group, nilpotent group, generalized Fitting subgroup, $\mathrm{F}^*(G)$-subnormal subgroup.
Mots-clés : solvable group
@article{MZM_2022_111_2_a8,
     author = {V. I. Murashka},
     title = {On {Products} of $\mathrm{F}^*(G)${-Subnormal} {Subgroups} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {277--286},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a8/}
}
TY  - JOUR
AU  - V. I. Murashka
TI  - On Products of $\mathrm{F}^*(G)$-Subnormal Subgroups of Finite Groups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 277
EP  - 286
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a8/
LA  - ru
ID  - MZM_2022_111_2_a8
ER  - 
%0 Journal Article
%A V. I. Murashka
%T On Products of $\mathrm{F}^*(G)$-Subnormal Subgroups of Finite Groups
%J Matematičeskie zametki
%D 2022
%P 277-286
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a8/
%G ru
%F MZM_2022_111_2_a8
V. I. Murashka. On Products of $\mathrm{F}^*(G)$-Subnormal Subgroups of Finite Groups. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 277-286. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a8/