On the Conditions for the Solvability of Boundary-Value Problems for Higher-Order Equations with Discontinuous Coefficients
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 219-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Dirichlet-type problem for an equation of high even order with discontinuous coefficients is studied. A criterion for the uniqueness of the solution is given. The solution in the form of the Fourier series in the eigenfunctions of the one-dimensional problem is constructed. The problem of small denominators arises when justifying the convergence of the series. Sufficient conditions for the denominator to be distinct from zero are obtained. It is shown that the solvability of the problem is influenced not only by the dimension of the rectangle, but also by the orders of the given derivatives at the lower boundary of the rectangle.
Keywords: even order equation, discontinuous coefficient, self-adjoint problem, eigenvalue, eigenfunction, Vandermonde determinant, small denominators, uniqueness, series
Mots-clés : uniform convergence, existence.
@article{MZM_2022_111_2_a4,
     author = {B. Yu. Irgashev},
     title = {On the {Conditions} for the {Solvability} of {Boundary-Value} {Problems} for {Higher-Order} {Equations} with {Discontinuous} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a4/}
}
TY  - JOUR
AU  - B. Yu. Irgashev
TI  - On the Conditions for the Solvability of Boundary-Value Problems for Higher-Order Equations with Discontinuous Coefficients
JO  - Matematičeskie zametki
PY  - 2022
SP  - 219
EP  - 232
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a4/
LA  - ru
ID  - MZM_2022_111_2_a4
ER  - 
%0 Journal Article
%A B. Yu. Irgashev
%T On the Conditions for the Solvability of Boundary-Value Problems for Higher-Order Equations with Discontinuous Coefficients
%J Matematičeskie zametki
%D 2022
%P 219-232
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a4/
%G ru
%F MZM_2022_111_2_a4
B. Yu. Irgashev. On the Conditions for the Solvability of Boundary-Value Problems for Higher-Order Equations with Discontinuous Coefficients. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 219-232. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a4/

[1] P. G. Bourgin, R. Duffin, “The Dirichlet problem for the vibrating string equation”, Bull. Amer. Math. Soc., 45:12 (1939), 851–858 | DOI

[2] F. John, “Diriclet problem for a hyperbolic equation”, Amer. J. Math., 63:1 (1941), 141–154 | DOI

[3] S. L. Sobolev, “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109 (1956), 707–709 | MR | Zbl

[4] Yu. M. Berezanskii, “O zadache Dirikhle dlya uravneniya kolebaniya struny”, Ukr. matem. zhurn., 12:4 (1960), 363–372 | MR

[5] P. P. Mosolov, “O zadache Dirikhle dlya uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 1960, no. 3, 213–218 | MR | Zbl

[6] B. I. Ptashnik, Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova Dumka, Kiev, 1984 | MR

[7] V. I. Arnold, “Malye znamenateli. I. Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 21–86 | MR | Zbl

[8] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova Dumka, Kiev, 1965 | MR

[9] K. B. Sabitov, “Zadacha Dirikhle dlya uravnenii s chastnymi proizvodnymi vysokikh poryadkov”, Matem. zametki, 97:2 (2015), 262–276 | DOI | MR | Zbl

[10] A. V. Bitsadze, “Nekorrektnost zadachi Dirikhle dlya uravnenii smeshannogo tipa v smeshannykh oblastyakh”, Dokl. AN SSSR, 122:2 (1958), 167–170 | MR | Zbl

[11] A. M. Nakhushev, “Kriterii edinstvennosti zadachi Dirikhle dlya uravneniya smeshannogo tipa v tsilindricheskoi oblasti”, Differents. uravneniya, 6:1 (1970), 190–191 | MR | Zbl

[12] A. P. Soldatov, “Zadachi tipa Dirikhle dlya uravneniya Lavrenteva–Bitsadze. I. Teoremy edinstvennosti”, Dokl. AN, 332:6 (1993), 696–698 | MR | Zbl

[13] A. P. Soldatov, “Zadachi tipa Dirikhle dlya uravneniya Lavrenteva–Bitsadze. II. Teoremy suschestvovaniya”, Dokl. AN, 333:1 (1993), 16–18 | MR | Zbl

[14] J. R. Cannon, “A Dirichlet problem for an equation of mixed type with a discontinuous coefficient”, Ann. Mat. Pura Appl. (4), 61 (1963), 371–377 | DOI | Zbl

[15] M. M. Khachev, “Zadacha Dirikhle dlya obobschennogo uravneniya Lavrenteva–Bitsadze v pryamougolnoi oblasti”, Differents. uravneniya, 14:1 (1978), 136–139 | MR | Zbl

[16] R. I. Sokhadze, “O pervoi kraevoi zadache dlya uravneniya smeshannogo tipa v pryamougolnike”, Differents. uravneniya, 19:1 (1983), 127–134 | MR | Zbl

[17] K. B. Sabitov, “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. AN, 413:1 (2007), 23–26 | Zbl

[18] K. B. Sabitov, E. P. Melisheva, “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2013, no. 7, 62–76 | Zbl

[19] K. B. Sabitov, V. A. Guschina (Novikova), “Zadacha A. A. Dezina dlya neodnorodnogo uravneniya Lavrenteva–Bitsadze”, Izv. vuzov. Matem., 2017, no. 3, 37–50 | Zbl

[20] F. Zh. Trikomi, Integralnye uravneniya, IL, M., 1960 | MR

[21] V. A. Sadovnichii, “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matem. sb., 72 (114):2 (1967), 293–317 | MR | Zbl

[22] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[23] A. A. Bukhshtab, Teoriya chisel, Prosveschenie, M., 1966 | MR | Zbl