On the Coincidence of Pure Greedy and Best $m$-Term Approximations
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 202-210
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain conditions on a dictionary in a Hilbert space that are necessary or sufficient for the coincidence of pure greedy and best $m$-term approximations.
Keywords:
greedy approximation, $m$-term approximation, coherence parameter, Hilbert space.
@article{MZM_2022_111_2_a2,
author = {K. S. Vishnevetskiy},
title = {On the {Coincidence} of {Pure} {Greedy} and {Best} $m${-Term} {Approximations}},
journal = {Matemati\v{c}eskie zametki},
pages = {202--210},
year = {2022},
volume = {111},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a2/}
}
K. S. Vishnevetskiy. On the Coincidence of Pure Greedy and Best $m$-Term Approximations. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 202-210. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a2/
[1] V. Temlyakov, Greedy Approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl
[2] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comp. Math., 5 (1996), 173–187 | DOI | Zbl
[3] G. Davis, S. Mallat, M. Avellaneda, “Adaptive greedy approximations”, Construct. Approx., 13 (1997), 57–98 | DOI | Zbl
[4] M. Donahue, L. Gurvits, C. Darken, E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Construct. Approx., 13 (1997), 187–220 | DOI | Zbl
[5] E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen”, Math. Ann., 63 (1906), 433–476 | DOI
[6] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl