Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 312-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: generalized derivative, best approximation, Bernstein's inequality, inverse theorem of approximation theory.
@article{MZM_2022_111_2_a14,
     author = {K. V. Runovskii and N. V. Laktionova},
     title = {Inverse {Theorems} on the {Approximation} of {Periodic} {Functions} with {High} {Generalized} {Smoothness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {312--315},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a14/}
}
TY  - JOUR
AU  - K. V. Runovskii
AU  - N. V. Laktionova
TI  - Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness
JO  - Matematičeskie zametki
PY  - 2022
SP  - 312
EP  - 315
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a14/
LA  - ru
ID  - MZM_2022_111_2_a14
ER  - 
%0 Journal Article
%A K. V. Runovskii
%A N. V. Laktionova
%T Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness
%J Matematičeskie zametki
%D 2022
%P 312-315
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a14/
%G ru
%F MZM_2022_111_2_a14
K. V. Runovskii; N. V. Laktionova. Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 312-315. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a14/

[1] A. I. Stepanets, Klassifikatsiya i priblizhenie periodicheskikh funktsii, Naukova dumka, Kiev, 1987 | MR | Zbl

[2] S. N. Bernshtein, “O nailuchshem' priblizhenii nepreryvnykh' funktsii posredstvom' mnogochlenov' dannoi stepeni. I”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 13:2-3 (1912), 49–144

[3] S. B. Stechkin, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[4] A. A. Konyushkov, Matem. sb., 44 (86):1 (1958), 53–84 | MR | Zbl

[5] R. Taberski, Aproksymacja funkcji wielomianami trygonometrycznymi, Wydawnyctwo Naukowe UAM, Poznan, 1979

[6] A. I. Stepanets, E. I. Zhukina, Ukr. matem. zhurn., 41:8 (1989), 1106–1112 | MR | Zbl

[7] A. I. Stepanets, Ukr. matem. zhurn., 47:9 (1995), 1266–1273 | MR | Zbl

[8] B. V. Simonov, S. Yu. Tikhonov, Matem. sb., 199:9 (200), 107–148 | DOI | MR | Zbl

[9] K. V. Runovskii, Matem. zametki, 106:3 (2019), 436–449 | DOI | MR | Zbl

[10] K. V. Runovskii, Matem. sb., 212:2 (2020), 106–137 | DOI | MR

[11] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl