$S_2$-Invariant Exceptional Collections on $\mathbb P^n\times \mathbb P^n$
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 308-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : exceptional collections
Keywords: $S_k$-invariance.
@article{MZM_2022_111_2_a13,
     author = {M. K. Mironov},
     title = {$S_2${-Invariant} {Exceptional} {Collections} on $\mathbb P^n\times \mathbb P^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {308--311},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a13/}
}
TY  - JOUR
AU  - M. K. Mironov
TI  - $S_2$-Invariant Exceptional Collections on $\mathbb P^n\times \mathbb P^n$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 308
EP  - 311
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a13/
LA  - ru
ID  - MZM_2022_111_2_a13
ER  - 
%0 Journal Article
%A M. K. Mironov
%T $S_2$-Invariant Exceptional Collections on $\mathbb P^n\times \mathbb P^n$
%J Matematičeskie zametki
%D 2022
%P 308-311
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a13/
%G ru
%F MZM_2022_111_2_a13
M. K. Mironov. $S_2$-Invariant Exceptional Collections on $\mathbb P^n\times \mathbb P^n$. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 308-311. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a13/

[1] A. D. Elagin, “Poluortogonalnye razlozheniya dlya proizvodnykh kategorii ekvivariantnykh kogerentnykh puchkov”, Izv. RAN. Ser. matem., 73:5 (2009), 37–66 | DOI | MR | Zbl

[2] A. Kuznetsov, Proc. London Math. Soc., 97:1 (2008), 155–182 | DOI | Zbl

[3] M. Mironov, European J. Math., 7 (2021), 1182–1208 | DOI | Zbl