Bernstein Inequality in~$L^p$ on the Line with Power Weight for $p>0$
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 300-303

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Bernstein inequality, entire function of exponential type, power weight, Dunkl operator.
@article{MZM_2022_111_2_a11,
     author = {D. V. Gorbachev},
     title = {Bernstein {Inequality} in~$L^p$ on the {Line} with {Power} {Weight} for $p>0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {300--303},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a11/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Bernstein Inequality in~$L^p$ on the Line with Power Weight for $p>0$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 300
EP  - 303
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a11/
LA  - ru
ID  - MZM_2022_111_2_a11
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Bernstein Inequality in~$L^p$ on the Line with Power Weight for $p>0$
%J Matematičeskie zametki
%D 2022
%P 300-303
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a11/
%G ru
%F MZM_2022_111_2_a11
D. V. Gorbachev. Bernstein Inequality in~$L^p$ on the Line with Power Weight for $p>0$. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 300-303. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a11/