Some Properties of Subcompact Spaces
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 188-201

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hausdorff topological space $X$ is said to be subcompact if it admits a coarser compact Hausdorff topology. P. S. Alexandroff asked the following question: What Hausdorff spaces are subcompact? A compact space $X$ is called a strict $a$-space if, for any $C\in [X]^{\le\omega}$, there exists a one-to-one continuous map of $X\setminus C$ onto a compact space $Y$ which can be continuously extended to the entire space $X$. The paper continues the study of classes of subcompact spaces. It is proved that the product of a compact space and a dyadic compact space without isolated points is a strict $a$-space.
Keywords: continuous bijection, $a$-space, strict $a$-space, subcompact space.
Mots-clés : condensation, dyadic compact space
@article{MZM_2022_111_2_a1,
     author = {V. I. Belugin and A. V. Osipov and E. G. Pytkeev},
     title = {Some {Properties} of {Subcompact} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {188--201},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a1/}
}
TY  - JOUR
AU  - V. I. Belugin
AU  - A. V. Osipov
AU  - E. G. Pytkeev
TI  - Some Properties of Subcompact Spaces
JO  - Matematičeskie zametki
PY  - 2022
SP  - 188
EP  - 201
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a1/
LA  - ru
ID  - MZM_2022_111_2_a1
ER  - 
%0 Journal Article
%A V. I. Belugin
%A A. V. Osipov
%A E. G. Pytkeev
%T Some Properties of Subcompact Spaces
%J Matematičeskie zametki
%D 2022
%P 188-201
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a1/
%G ru
%F MZM_2022_111_2_a1
V. I. Belugin; A. V. Osipov; E. G. Pytkeev. Some Properties of Subcompact Spaces. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 188-201. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a1/